microsystems

€ sun’ 4

SunView Programmer’s Guide

Part Number: 800-1783-11
Revision A of 27 March, 1990

Sun Workstation, SunCore, SunCGI and the Sun logo
are registered trademarks of Sun Microsystems, Incorporated.

SunOS and SunView are trademarks of Sun Microsystems, Incorporated.
UNIX® is a registered trademark of AT&T.

All other products or services mentioned in this document are identified
by the trademarks or service marks of their respective companies
or organizations.

Copyright © 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1990 Sun Microsystems, Inc. — Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means — graphic, electronic, or mechanical — including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack-
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter-
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,190 4,527,232 4,745,407
4,679,014 4,435,792 4,719,569 4,550,368 in addition to foreign patents and applications pending.

s

PICTACE oo sesseeseess2sseeesssess s e e st e 2ot et s s seeseeseesseerseneoe xxvil

Chapter 1 INTOQUCHION ..o seeosseesrsessssesesss oo
WHhat iS SUNVIEW? ...t s sssse s s sssss s
History evresee et amsesn e Aes vt et eSS Rt e et R s AR rn 010
REICASE 3.0ooooee e s s
REICASE B.2 ... s s sssns s s
REICASE 3.4ooo s sss s s s
Release 3.5 ... e
REICASE 4.0 ... s s s s s s s
REICASE 4.1 ... s s s
Code NO Longer SUPPOTITEA ..o sssssssssssssssssns

W W NN N NN N = -

Chapter 2 The SunView MOEL ...
210 ODJECESoooeeeeorsere e sesssessssss s smsse s s s ssses sessssss s s ssoes s s
WINAOW ODJECESoooo oot sssss s s sssssss s esssen

Other Visual ODBjJECLS ... ssesesssssssseesesmssseesssnsseee

2.2. Examples of the use of Objects by Applications
2.3. Windows
Frames

0O 3 NN v W

Manipulating Frames Via Menus

Subwindows ...
2.4. Input: The NOUFEToooceeer e,
Callback Style of Programming

Why a Notification-Based System?

—iii -

Contents — Continued

Relationship Between the Notifier, Objects, and the

Application et e 8 8 R8s 18

Calling the NOtfier DITECLLY ... eeeeeeeeessessssaesessss s 20
Chapter 3 Interface Outlineooieooeseeeeeeeeseseessee s 21
SUNVIEW LIDIATIES ..o s ssssssss s 21
Compiling SunView Programs ... 21
HEAAET FHIESoooooeeeeceree s ssssssssssssssssss s sssssis sssssss s 21
Object Handles e s sssinane e 22
Attribute-based FUNCHOMS ... e ssssssss s sssssesssssssse e 22
Standard FUNCHONS ..o s ersssssssessssssss s sssees 23
Example of SunView-Style Programming ... 23
Atutribute List Size 23
Reserved NAMESPACES ... ssssmsmssesessseesssssssssssessssssssssssssinsen 24
Chapter 4 UsSIing WINAOWSooeeereeesessosiessessssssssssesssns 25
4.1, BaSiC ROULINEScccccorvveeroeeec s ssiss s sssssss s sssssssssssssss s sssss s sssene 27
Creating a Window ... OSSOSO |
Initiating Event Processing 27
Modifying and Retrieving Window Attributes ... 27
DesStroying WiNAOWScccooeomecomeeeseeireseesssssrssesssss e sesssssesssssseesenes 28

4.2. Example 1——hello WOTIdoeeeeeeeeeeeeeeeeeeeee e s 29
4.3. Example 2— simple_panel e s 31
SOmME Frame ALIDULESccc.veconevrrivcevsrsmesss s esssesesssesess s sssses 32
Panels 33
Fonts 33
Panel Items 33
Notify Procedure s st e 33
Window Sizing — wWindow fit () ..., 33
Fitting Frames Around Subwindows ... 34

4.4. Example 3-— liSter ..o 34
T 25, &) 1) o) (S ey 1) OO 36
POPUPS ..ot s ssmssssassssssss s sssssssssssr s Y

.iv.

Contents — Continued

Pop-up Text Subwindow37
Pop-up Property Sheet e 38
Invoking the ‘Props’ Menu Item ..., 39

WIN_SHOW ..ot . 40

Pop-up Confirmer 40

WINAOW_LOOP () e ssere s ssssss s sssssssssss s seseess 41
Restrictions on Pop-Up Frames ... 42
Controlling a Pop-up or Frame’s Shadowing ..., 42

4.6. Example S— image_bBrowser Ieeeervsscsssreessssssssesssssssses 43

Specifying Subwindow Size ... 43

Default Subwindow LayOut ... sisssss s 44

Explicit Subwindow LayOut ... 44
Specifying Subwindow Sizes and Positions ..., 45
Changing Subwindow Layout Dynamically ... 45

The ReCt SIUCIUTE ... ssssssiss s e 45

4.7. Example 6— image_browser 2 ... 46

ROW/COIUMN SPACEooocooeeeecerrere e sesssssssessssssssssss s s ssssssses 46

4.8. Attribute Ordering ... ceereemmenemsennenmennnesenenee 48
Different Classes of ATribULESccoooeerroioeeesece e snsnnee 49

The Panel PACKAZE ... ssssssissees s sssssssssssse s ssenes 49

4.9. File DESCIPLOT USAZEoooococererecscsree s sessssesssssssssssssssses s sssesssssssneo 50
Counting File DESCIIPLOTS ... sssernssesseen . 51

File Descriptor Leakage ... s s s s s 51
Chapter 5 CanVaSses ... 53
5.1. Creating and Drawing int0 @ CaNVAScocooccoereeoeeceerr e sessmmesesseeneen 55
5.2. SCroOlling CANVASESo.covovovoceeeereesee o sseeeeeesssesssssmsessssssses s s . ¥
5.3, Canvas MOMEL ... eese s s sssesessmssssissee IO
The Canvas eeee v 88 R e e 58

5.4, REPANUNGoooooooeere e ssee s 59

Ret@iNed CANVASEScccovevemurerveins s s issss s sesss s 59

Non-Retained Canvasesmeeronen 59

The Repaint ProCeAUIE ... ssmsssssssssssesssssssssssssessesse 59

Contents — Continued

Retained vs. Non-Retained ...

5.5. Tracking Changes in the Canvas Size

Initializing a Canvas ...

5.6. Automatic Sizing of the Canvas ..

5.7. Handling Input in Canvases

Default Input Mask
Writing Your Own Event Procedure

Translating Events from Canvas to Window Space ...

Border Highlighting ... osssssssssssssssessseeee

5.8. Colorin CaAnVASEScooovveoeeeeeee s seeeeeesssseeesssseeen

Setting the Colormap Segment ...

Color in Retained Canvasescccoeverveernnn,

Color in Scrollable Canvases

Chapter 6 Handling INPut ... csssnsssnsssass s

6.1. An Overview of the Input Environment ...

How are events generated 7oorrmerermsssssss

What does the Notifier do with these events ? ..
How do windows determine which input they will receive?
6.2, BEVENILS oo veeees e sve st eesesssssesasesssesssaseaseesesssesesseas

AN EVENL PTOCEAUTE ... s sensasnnns

How Subwindows Handle Eventsooocoovvvoe.

0.3, A LISEOLEVEIIS ...oooooooeooecee e seeseessesssssssesessesssesesesesssssesssssessnasenses

Keyboard Motions ..., et

6.4. ClasSES OF EVEIILScoooovvvoevoevoveoeeeesoeeeseeeseessessssssssessssessessesens

ASCILEVENLSooooeoooeeeeoeeeee e eeseeeeeesesesemesssesessssseresseeenssse s ses s esesessoe

Locator Button EVENtScoooovoooeeeeeee e

Locator Motion Events

Window Events ... eereeeeeeeerene et esas s stsseaas

Function Key EVENLts ..o,

Shift Key EVENLS ... s

SEMANUC EVENLS ... esessses s s sessrnseen

Other Events et rer e ese s e s ea s sra e

vi

60
60
60
62
63
63
63
63
64
65
65
65
65

69
69
70
70
70
70
71
71
75
76
76
76
76
717
78
79
79
79

Contents — Continued

6.5. EVENE DESCIIPLOTSooooocceveoeeceeevve s ssse s smsisssesssssssssse s sssssssssssssssssss 80
6.6. Controlling Input in @ Window ..o ssissnesoeseon 80
Input Focus ... 81

INPUL MASKooooo s et e ssss s s 81
Determining which Window will Receive Input ... 82

6.7. Enabling and Disabling EVents ... 83
WHhiCh MaSK 10 USE ..o v ssss s ssssssssssssssssssssssseesss 83
Setting the Input Mask asa Whole ..., 85
Querying the INput Mask STatecweummmmerrseenerssesme s e 85

6.8. Querying and Setting the Event State ... 80
6.9. Releasing the Event LOCK ... 87
6.10. Reading Events EXPHCItLY ... essssss s sssssss s 87
Chapter 7 Imaging Facilities: PIXWiNS ... 89
7.1, Whatis aPIXWINT ..o e ssssee 91
7.2. Accessing @ PIXWIN'S PiX€IS ... s sssssiees 91
Obtaining the Window’s PIXWiIN ... 91
Write Routines e e 8 ekt ek e e 92

Basic RasterOp OPETationscoeoeseseesmseeessensssseseeseeseeseeseens 92

Other Raster OPETALiONS ..o eessseeses oot 92

TEXE ROULINESccoovoe e s e ssrs e sessssserssssssss e 93
Batching and Stenciling ROULINES ..o eeenseseeene 94
Drawing POLYZONS ... sssoss s s sssssssssesssssee 95
Drawing Curved SHAPES ..o scoeeemeessssssssssseseeneeeson 95
DIrawing LINES ... ssesnse e ssse s s sssssssssss e 95

Read and COpy ROULIES ..o ssssss e ssssssss e sssssses 96

7.3. RENAEIING SPEEA.ccoooooeeeeeee et seessssssss s sssssss s s 96
LOCKINE ..o sevveseee s oo sssssssses s sssssss s ssssssenen 97
BAtCHING ..ot seeee s s 98
Locking and Batching Interactioncoeieorecsssooonn 100

7.4. Clipping With REZIONS ..o seeseermeessesssessessssessseenssn 100
TS50 COLOT .o st s e st s 101
INroduction t0 COIOTeoeeenireineeecemeins s e ssssses s 101

—vii —

Contents — Continued

The COIOIINAD ... sssses s snssrseeseressereseseees 101
Changing the Colormap ..o . 102
COIOTMADP SEGMENILSoeeoeeeeeeereseeee e reeeeesessss e memessssssens 102
Background and Foreground ... 103

Default Colormap Segment crersmmeeee 103
Changing Colors from the Command Line ... 103

Sharing Colormap SEMENLSoooemreereomeressisenreese s ssrissesseen 103
EXaAMPIE: SHOWCOIOTooooeoeeeeeeeeeesesee oo s 104
Manipulating the COlOMMAP ... s 105
Cycling the COIOIMADcococoooeoooeeeeeeeee oo ssss e 106
Miscellaneous Utilities 107

USING COIOT ... rssire s serese s S (¢ 1
Cursors and MENUSccmmmmremmsmnsensessmesss s ssseses s sssesens 107

Is My Application Running on a Color Display? ... 108
Simulating Grayscale on a8 Color Display ... 108
Software Double Buffering 108
Hardware Double-Buffering ..., 111

7.6. Plane Groups and the cgfour Frame Buffer ..., 113
SunView and Plane Groupseeeosooeeessesssssssssessosssnees 114
sunview and Plane Groups ... 115
Chapter 8 Text Subwindows ... s s 117
SUMMAry TADIES ... sonsns 117

8.1. Text Subwindow CONCEPLSoooooooooeeeeeoeeeeessceereescreerssssseerssscensssnes 120
Creating a SUDWINAOW ... 120
Attribute Order eevsens s et s 120
Determining a Character’s Position ... 120
Getting @ TEXE SEIECHOMooooooecr oo seeseseeseeeseestsemsesssesssassssess 120
Editing a Text SUbWINAOW ..o s ssrsnes s 120

8.2. L0ading QFAlLE ... 121
Checking the Status of the Text Subwindow ..., 121
Textsw_status Value ... 121

8.3. Writing to a Text Subwindow ...,

— viii -

Contents — Continued

INSETtiON POINL __.....ooooooooeeeeer e s s 123
Positioning to End of TeXt ..o 123

8.4. Reading from a Text Subwindowocomiooceersssee oo 123
8.5. Editing the Contents of a Text Subwindowoooovovooreoc 124
Removing CharaCtersoerecseeiessscesesossssssssss s 124
Emulating an Editing Character ... 124
Replacing ChATACIETS ..o sssssns s ssssses 125

The EdItiNG LLOGooooeeeeoeeee e s ssesss s sesssnen 126
Which File is Being Edited? ... sssineneeres 126
Interactions with the File SyStem ..., 126

8.6. Saving Edits in a SUbwindowc..comevvemriecicssieeeeceers e 127
StOriNG EditSoooooooooeeeeere et srsssssnsssesssnn 127
Discarding EditS ... essssssssnese s snsos oo 127

8.7. Setting the Contents of a Text Subwindow 128
TEXTSW_FILE CONTENTS ... ssssssssssssse s 128
TEXTSW_CONTENTScreinrennesesssressansnre s srsssasssssssessssssemeesesenes 1 28
TEXTSW_INSERT FROM FILE . SOOI 4"

8.8. Positioning the Text Displayed in a Text Subwindow ... 129

Screen Lines and File LiNeS ... 129

Absolute POSIIONING ... ssnessssssssssessssssesssssssssnnns 130

Relative POSIHONINGooooocoooeooeeoeeeee oo sseee oo 130
How Many Screen Lines are in the Subwindow? ..., 131
Which File Lines are Visible? 131
Guaranteeing What is Visible ..., 131

Ensuring that the Insertion Point is Visible ..., 131

8.9. Finding and Matching a Pattern _.................ccmicemecsssinrisesn. 132

8.10.
8.11.
8.12.
8.13.

Matching a Span of Characters ... eerneeeeessnisessnn 132
Matching a SpeCific PAMEIN ... e 132
Marking POSIHONScc.ooooooioooceeseccee oo ssessse s 133
Setting the Primary SeIECtON ... 135
Dealing with Multiple VIEWS ... 135
Notifications from a Text SUBWINAOW ... 136

—ix-

Contents — Continued

Chapter 9 Pan€ls ... sssssmssssssss s
9.1. Introduction to Panels and Panel Items ...

Message Items
Button Items

ChOICE ILEIMSoooeeeeeee e ees e s s s sesss s sesenssessss e eenesssenrmn s

TOZELE TLEIMISooo oo sisssnse e e ssissss s ssssssssss s sesssssssss e
TEXLITCINIS ..o s seesessssss cessessessssseaeressessesessesmessesseemsesees essesees e
SLACT TIEINISooooooeeeee oo eeeeesessesesseesseesmeamsess e eossesemmassseesss et emmsssssssssesssemssensen

0.2, BaSiC PANEl ROULINESoooooooeeeeeeee s seseseseesesessert e essssansene

Creating and Sizing Panels

Creating and Positioning Panel Items et et

Explicit Item Positioning ...

Default Item POSIHONING ..o

Laying Out Components Within an Item ...
MOdifying ALIDULES ... sssssmsssse s
Panel-Wide Item Attributes ...
Retrieving Attributes e s e s

Destroying Panel IEMSccccccoocerivoeecere e ssssssssessssssssssessss s
9.3. Using Scrollbars With Panelscoimieceeremeessssieeee s
Creating SCIOIIDATSoueeverereissesesiseeess s s sssssss s

Scrolling Panels Which Change Size ...

Detaching Scrollbars from Panelsceecmoeeeersessenieen
D4, MESSAZES ..o rssssseses s smsseressssssssssoes
0.5, BULLONSooooccceeeeeeeeeeeessreesee s eessessssse s smsssesssos e sssns s s s

BULION SCLECHOMN ... e eeereessesecsesessessms s sesseermssmssessessssesess

Button NOUACAION ... ees e eseseeers esseseressesesseesesseens

Button Image Creation ULLILY ... eeessessssessesees
9.6. CROICES ..o sssnssess s mamssssese o e s
Displaying Choice Items ... e et erane s

Choice Selection
Choice Notification ... eeeeseees et ere e ses s senesons
CROICE VAIUEoooooeeeeee et sessseessesamssesssose s ssssnt s sessssns

CROICE MEIIUS ..o ese oo ses et eeseoreessessesseemesesssesesee

Contents — Continued

9.7, TOZELES ... sesssssises s sssssssiness 163
Displaying TOZEIESorrorercsosrrereerennn 163
Toggle Selection et e et 163
Toggle Notification ... 163
Toggle Value ..., . 163
TOZEIE MENUSooooooeeeeeee s sessssssesss s ssssss s st 165
PANEL_CHOICE_FONTcerisrirnissisersssssesessssssssssessesssssss 165

9.8, TEXL ..o sscssess s s ssmsses s snsss e st o s sssss s s s ssssssssonesses 166
Displaying Text Items SOOI 166
TEXE SELECHON ...t srse st s s s s 167
Text Notification ... 168

Writing Your Own Notify Procedure 169
TEXE VAIUC ... s e sssnse 170
TEXEMEIUSoovroeeeirersare e sesmsans st sssssess s s sensss et sessssessnsessesesscens 171

0.9, SIACTS ...oooeerevresrsnresss e esessssss s seossessssse s esse oo snessiness 172
DiSplaying SHACTSc.oovummieeensinsressnsressssessssssessssessessssesesssssesssesssess 172
SHACT SCIECHOMNooooooeoe et sssss sssssse e sssssss s 172
Slider NOGCAtONooc.oooveoeeee e sssss s sssses s ssssesses 112
SHACT VALUEooooooeoee oo ss s s e s s s s 173

9.10. Painting Panels and Individual Items 173

9.11. Iterating Over aPanel’s IeIMS ... s 176

9.12. Panel Item CHENt DALA ... 176

9.13. EVent HANAIIEooooooooeoooeooeeeeeeeeeeereeee s eeees s s s sesese s 177
Default Event Handling ... esessesse e 177
Writing Your Own Event Handleroooieeeeereesesiinne 177
Translating Events from Panel to Window Space ... 181

Chapter 10 ALETES ..o s 185

10.1. INtrodUCHON tO ALETLS ... s s sssisses 185
USES OF AICTESooooove e e s s s e 186

10.2. The Components of an Alertoovvee. 186
ALCTE AITOW ..o eessse s e st s s 186
Multiple-Line TeXt MESSAEoooococororoeeeeeseceeees e sesessessesee e 186

—xi-

Contents — Continued

10.3.
10.4.

Chapter 11 TTY Subwindows

11.1.
11.2.

11.3.

11.4.
11.5.

Chapter 12 Menus

12.1.
12.2.

Buttons

Positioning

Beeping ...

alert prompt ()
Building an Alert

Example 1 — Messages and Simple Buttons
Yes and No Buttons

Example 2 — Changing Fonts

Example 3 — Using Triggers

Creating a TTY Subwindow

Driving a TTY Subwindow ...

ttysw_input ()

ttysw_output ()

Example: tty io
TTY Subwindow Escape Sequences

Standard ANSI Escape Sequences

Special Escape Sequences

Example: tty_io

Reading and Writing t0 @ TTY Subwindow ...
The Program in the TTY Subwindow
TTY PID ...
Talking Directly to the TTY Subwindow
An Example

Basic Menu Usage

Components of Menus & Menu Items

Menus

Visual Components

Generate Procedures

NOUEY PrOCEAUIESoocooooooeerr e s ssss s sssss s

—xii -

195
197
197
197
198
198
198
198
199
199
199
199
199
200
200

Contents — Continued

CLHENE DALAooooooeoee s sssss s ssssse s msssss s s 210
MENU TEINS ...oooooooeeere s esess s sss s s ssssse s s sssss s 210
MENU TEEIMScoooooooe v s sssss s st ssnsene 210
Representation on the SCIEEN ... ssssssissesseseseses 210
TEEM VAIUESoooeeer e e s snsssss s s st ssenn 211

Item Generate Proceduresoovooeeeeeeereeeeeeeeererscesmesseesseessseee. 211

Item ACHON PTOCEAUTES ..o seessssss e sssssssessssrssne 211

Client Data S 3 § |

Tem MATZINS .ot s oss e e 212

12.3. EXAIMPIEScoooioiooieeerice s sesss s sess s ssens s s sssesesesssssse s 212
12.4. Ttem Creation AWIDULES ..o sssmsssssssessseseess 219
12.5. DESIroyiNg MENUSo..cccccccrrverorsseees oo sssss s ssssnesesssssssseseeses 220
12.6. Searching for a MENU IIEMccoooevioirecmsreere s snsse s sssessesenenns 221
12.7. Callback Proceduresocereeeesssessierrsroes oo . 222
Flow of Control in. menu_Show ()rmrmissesesssssmessinssinins 222
Generate Procedures 224
Menu Item Generate Procedure 225

Menu Generate PrOCEAUIEmmmrmmieeserisseesesesesssonsssssessssnns 226
Pull-right Generate Procedure ... U crserenns e 228
Notify/ACtion PrOCEAUIES ... sesssisess s sssssssssssseens 229

12.8. Interaction with Previously Defined SunView Menus ... 230
Using an Existing Menu as a Pull-right ... 230

12.9. Initial and Default SEIECHONScc.oooeeeooeeeeeeeeeeseeesessssse s 231
12.10. User Customizable AIHDULES ... eccesssessssssessssissssnes 232
Chapter 13 Cursorsooce e s s e e 234
13.1. Creating and Modifying CUISOTSoiooecosiiieecsssssssssssssssssisossnes 236
13.2. Copying and Destroying Cursorscooerreen 236
13.3. Crosshairs ... e e RS e e e 237
13.4. Some CurSOr AUITDULESccccccoooioevereeeeeee e eensssssee s 238
L3 1017 g T 2 (<o) « TSN 241
14.1. Using Images Generated With iconedit ... 242

— Xiii —

Contents — Continued

14.2. Modifying the Icon’s Image

14.3. Loading Icon Images At Run Time

Chapter 15 Scrollbars
15.1. Scrolling Model

Types of Scrolling Motion ...,

Undoing a Scroll

15.2. Scrollbar USer INTEITACEooocooooveeeeeeeeeee e eesessssssacsosssss s

15.3. Creating, Destroying and Modifying Scrollbars
15.4. Programmatic Scrolling ...
SCROLL_NORMALIZE attribute

Chapter 16 The Selection Service
16.1. Getting the Primary Selection
16.2. Setting the Primary Selection

Chapter 17 The Notifier
Header Files

Related Documentationcocooooovveveeevn.

17.1. When to Use the Notifier ...

17.2. Restrictions

Don’t Call...

Don’t Catch. ..

17.3. Overview

How the Notifier Works

Client Handles

Types of Interaction

17.4. Event Handling

Child Process Control Events
“Reaping” Dead Processes

Results from a Process

Input-Pending Events (pipes)
Example: Reading a Pipe

- XV —

255
256
256

Contents — Continued

17.5.

17.6.

17.7.

ClOSING thE PAPEooocee v sssssssissssssssssssssssssssssssssssssssseanes 265
SINALEVENLSoocoooooooceeeieeceeee oo sssisns s ssssssssesssssssssssosssssesssssssssssssn 265
A signal () Replacement for Notifier Compatibility ... 265
Example: WIHNG t0 @ PIPE ... cssseserss s 266
Asynchronous Event Handling ... 267
TAMEOUL EVENLSoocoooeoee e sssneses s sssssss s s 268
Example: Periodic FEedback ... 268
POILIIEGoooooove st ssses s ssnsensssssmssssesssssessss s ssres e 269
Checking the Interval Timer ... 270
Turning the Interval Timer Off ... 270
INEEIPOSILIONooooroeereee e seeeseeeresssesessssenosossssssreereeeenns 270
How Interposition WOIKS ..o 270
Monitoring a Frame’s Statecomssmmsssesessirnenn 271
Example: Interposing on Open/ClOSEomeeceneeeeeresveenen 271
Discarding the Default ACHON ... 273
Interposing on ReSIize EVENLS ... eee e 273
EXQMPIE: 7€SiZ€_AEIMO ..o s 273
Modifying a Frame’s DeStruCtioncooc.ooovermcoeesiosssmsssssssee s 273
DESITOY EVENLSoooooooceeee oo s e siss s s 274
CRECKING ..o e sssse s st s s e 274
Destruction ... e e 274
A Typical Destroy Handler ... vesssnseessenen 274
Example: Interposing a Client Destroy Handlero...... 275
Porting Programs to SunView ... ettt e st s nRs R 277
Explicit Dispatching ... 277
Implicit Dispatching ... 277
Getting Out ...
ErTOr HANALNEooooooooeee oo sessssssessesssmsssensse s
Error Codes

Handling Errors

Debugging ...
NOTIFY ERROR_ABORTommrermmemmmemmesseessssssesmmesssssessessnnes 280
Stopin notify perror() or fprintf(3S) ... 280

— XV —

Contents — Continued

notify dump

Chapter 18 Attribute Utilities
18.1. Character Unit Macros

18.2. Creating Reusable Attribute Lists

Default Attributes

18.3. Maximum Attribute List Size

Chapter 19 SunView Interface Summary

Alert Tables

Attributes

Functions

Canvas Tables

Attributes

Functions and Macros

Cursor Tables

Attributes

Functions

Data Types

Help Tables
Help Attributes

Functions and Macros

Icon Tables

Attributes

Functions and Macros

Input Event Tables
Event Codes

Event Descriptors

Input-Related Window Attributes

Menu Tables

Attributes

Item Attributes

Functions

— Xvi-—

280

281
281
282
283
283

Contents — Continued

Notifier Functions Table 314
Notifier Functions Tablemmemmmnsessssensmmsssnen 314
Panel Tablescneennecrreissinses s 317
ARLIDULESooocnreevee s ssessesssessssses s sessssse e 317
Generic Panel Item AHTIDULESoooooommevrriisroisscss s sssesees 318
Choice and Toggle Item AUIibutesccoerveereiceesmsinnnensoen 320
Slider Item AUTDULESccooovoooeceeeceeeeens s 322
Text Item ATFIDULES ... sssess s sssenes 323
Functions and MACTOS ... smnssssssessssssssssssssssssssssses 324
Pixwin Tables ... eereimemae e e 1 e RS RR R 327
Pixwin Drawing Functions and Macros Table ... 327
Pixwin Color Manipulation Functions Table ..., 331
ALITDULESooooo s sssss s e ssssse s essss s 333
Functions and MACIOSoreeemmsrmeisssen e sessiss s 336
Text Subwindow TabIEs ... seseresee 337
ALLTIDULESoooceoereeere e enes e sesss st sssssnssess s sneseseinses 337
Textsw_action AMMADULES ... 341
Textsw_sStatus VAUES ... ssensesnereons 342
FUDNCHONSooooe e et ssnsesesissscens 343
TTY Subwindow TabIEs ... sesnne s sssssess s ssssecess 347
ALLIDULESooooeee e s sss s st ssne 347
FUNCHONSooooee e st s 347
Special ESCape SEQUENCESooooooeeer oo ssssssse s 349
WINAOW TaDIESoocooee e s s 351
ALITIDULESooocooceevee v s e ssssss s s s s s e 351
Frame AMTIDULEScc.coovoovoecessreseese e s s s 354
Functions and MACIOS ... enssmesssssenssesssssssssesssssenss 390
Command Line Frame Arguments ... 358
Appendix A Example Programscseroserrserse 359
SOUICE AVAILADIEoocoeecee i ssses s s s 359
N S 7 SOOI 1 1°
A2, IMAGe DIOWSEr I ..o s e e 370

- XVii —

Contents — Continued

A.3. image_browser 2 ...

Ad. 1y io et s i e

AS. font menu s

A6, TESIZE_ACMO ... rssessissersses s

AT, ACIOOL ..ot ee e eessessss s sessssenamesesessne e

A.8. yypein

A.9. Programs that Manipulate Color

(600)/0 171 A

animatecolor

A.10. Two gfx subwindow-based programs converted to use

SUNVICWooo e eseeee s eeseresessssseseosssesos s assssssssssonssesessssstosssssossssssnios

bounce et es s s e R et SRR

SPHETES ..o eses st sos s seessssss s s ses st sssarsssrsssssios
Appendix B Sun User Interface Conventions

B.1. Program Names

B.2. Frame HEAAETScooooooooeeeeoeeeeee oo eeeeeesseseneenneeens

B.3. Menus ... ettt oot ese et es e eenee et eenereeeeniee

CapitaliZatiOno.coovvveeeeeeeeeereecer e eeeeeesremmeenenns

Menus Showing Button Modifiers ...,

Interaction with Standard Menus

Enable/Disable Menu Items

Multi-Column Menus

B.4. Panels

BULIONS ... ese s ees e s s sesssenseesses s

List of Non-Exclusive Choices ...,

List of EXCluSive ChOICESmrvvmeeeeeeoeeeeeeeeoeeeeeeeone

Binary ChOICES ... ssssssssssssssssssssens

Text Items ..

Allocation of Function Between Buttons and Menus

B.5. Mouse Button Usage ceeenes s s ar s ra s b

Allocation of Function Between Mouse Buttons

Using Mouse Buttons for Accelerators ...,

— xviii -

374
379
382
389
394
400
404
404
409

416
416
421

Contents — Continued

B.6. Cursors ... vt s s 431
B.7. ICONS ..ot s sssssnens . 431
Appendix C Converting SunWindows Programs to SunView ... 433
C.1. Converting TOOLSoreosemeeemsssses s sssssssee e 434
General Comments ... 434
Programming Style Changesoeeerresssin 434
Object typedefs ...
Attribute Value Interface
New ODbjects ...
Canvas SUDWINAOWSccvvvvvmsrnereenee s s
TeXt SUDWINAOWSocccccooeeie s ssse s

Scrollbars ...

Objects in Common between SunView and SunWindows ... 436
CUTSOTSc..oooceveessesesiss s s s s s ssess s sesassss s ssss 436
LCOMIS .ot vsners s s sssss s ssssssnsssses s 436
MEIIUS |.....oooooeeeemeeeessmssssssssssss s sesssssssssssss s esen s ssss s e s 437
Input Events ... eee e e e s e 437
Setting up Input Event Handling ... 438
Sigwinch Handlingocreiceseeeseseee e 438
WIIAOWSooooevreec s ssssssssss s sssssssass s s sessssss s 438
Panels ... SO 438
SIGNALS ..o sssse e s s s 439
PIOIMIPES ...ooooooooootremmeeeeeseesesese s seesessssssossss s seresssesrenen 439

C.2. Converting Gfxsubwindow—Based Codeccooreeeerreeceoesersssenn 441

Basic Steps ... e 441

Replacing TOOL INTETACHONooooooeomooceeeee oo snnesss s 441
Styles of Damage Checking . 441
Either the Notifier Takes OVETeceeoseeseeessreesseone 441
Or Your Code Stays in Control 442
Handling Damage ... eeee s

The gfxsw Structure ...

FINISNING UD ..ot ess e s ss e

- Xix —

Contents — Continued

Index

Miscellaneous

Two Examples

— XX —

S

Table 3-1

Table 4-1
Table 4-2
Table 4-3

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6

Table 7-1
Table 7-2
Table 7-3

Table 8-1
Table 8-2

Table 9-1
Table 9-2
Table 9-3
Table 9-4

Tables

RESEIVEA PIEfiXES ..o e ssssssssns s 24
Window Usage EXamplesmmsins . 25
Window Row/Column Geometry Attributes e 46
SunView File DeScriptor USAZEommmmmneisissssssssseeseee 50
EVENL COUCSooooooooo e e 72
Keyboard Motions and ACCElEratorsooveeveeeeeersmmssmsamsnennns 75
EVENt DESCIIPLOLSoooocoooevee oo esssssses s sssss s s 80
Attributes Used to Set Window Input Masks ..., 83
Macros to Get the EVENt Stateoocureeeeeneseessiss s sssssensssesses 86
Macros to Set the EVent State ... sseneess 87
Sample Colormap to Isolate Planes ... 109
Pixwin-Level set AUTIDULES ..o 113
Pixwin-Level get ALTDULES ..o 113
Textsw_status ValUues ... o 122
Textsw_action Attributes ... RN N K Y
Text Item Notification ...) i ;‘:'::168,
Return Values for Text Item Notify Procediires 69

Panel Event Handling Attributes

Panel Action FUNCHONS ... it e . 179

— xxi—

Tables — Continued

Table 12-1 Attributes to Add Pre-Existing Menu Items

Table 12-2 Menu Item Creation Attributes

Table 12-3 Menu Attributes Recognized by menu_find () ...

Table 12-4 User Customizable Menu Attributes

Table 15-1 Scrolling Motions

Table 18-1 Example uses of the ATTR_ROW ()
macros

and ATTR COL ()

..............

Table 18-2 Example uses of the ATTR_ROWS () and

ATTR_COLS () macros

Table 19-1 Alert Attributesoovvvvorann,

Table 19-2 Alert Functions ...

Table 19-3 Canvas Attributes ...

Table 19-4 Canvas Functions and Macros

Table 19-5 Cursor Attributes

Table 19-6 Cursor Functions

Table 19-7 Data Types ...

Table 19-§ Help Attributes

Table 19-9 Help Functions and Macros
Table 19-10 Icon Attributes

Table 19-11 Icon Functions and Macros

Table 19-12 Event Codes

Table 19-13 Event Descriptors

Table 19-14 Input-Related Window Attributes .

Table 19-15 Menu Attributes

Table 19-16 Menu Item Attributes

Table 19-17 Menu Functions

Table 19-18 Notifier Functions

Table 19-19 Panel Attributes

Table 19-20 Generic Panel Item Attributes ...

Table 19-21 Choice and Toggle Item Attributes ..

Table 19-22 Slider Item Attributes

— Xxii -

281

282

286
288
289
290
291
293
294
298
298
299
300
301
304
305
306
310
312
314
317
318
320
322

Tables — Continued

Table 19-23
Table 19-24
Table 19-25
Table 19-26
Table 19-27
Table 19-28
Table 19-29
Table 19-30
Table 19-31
Table 19-32
Table 19-33
Table 19-34
Table 19-35
Table 19-36
Table 19-37
Table 19-38
Table 19-39

Table C-1 SunWindows = SunView Equivalences

Text Item Attributes

Panel Functions and Macros

Pixwin Drawing Functions and Macros

Pixwin Color Manipulation Functions
Scrollbar Attributes

Scrollbar Functions

Text Subwindow Attributes

Textsw_action Attributes

Textsw_status Values ...

Text Subwindow Functions

TTY Subwindow Attributes

TTY Subwindow Functions

TTY Subwindow Special Escape Sequences

Window AHbUtes ..o,

Frame Attributes

Window Functions and Macros

Command Line Frame Arguments

— XXiii -

282

s g
S

SRR SRR et T I i
e S

Figures
Figure 2-1 SunView Objectscoeeremccsnenn 6
Figure 2-2 MailtOOL] ... esssmessssresss s ssmssssssnsessssssssmsemssssesssesssssssssssssoss
Figure 2-3 iconedit 9
Figure 2-4 mailtool-DULtONSccccommmieeneeeeeessessssssmensmseersssesssessinsensscssssssssssnssses 10
Figure 2-5 mailtool-menus 11
Figure 2-6 A subframe 12
Figure 2-7 Structure of iCONEditoooomeereererrersssssmmesserssesssssenns 13
Figure 2-8 Structure of mailtool 13
Figure 2-9 Base frame menu 14
Figure 2-10 Subframe menu SR V"
Figure 2-11 Flow of Control in a Conventional Program . 16
Figure 2-12 Flow of Control in a Notifier-based Program ... 17
Figure 2-13 Flow of Input Events in iconedit, a SunView
APPLCALONoorrrseerersrrisinsssrisssnnens 19

Figure 4-1 Hello World Window .,
Figure 4-2 Hello World Panel
Figure 4-3 lister
Figure 4-4 filer
Figure 4-5 A Pop-up Text Subwindow

Figure 4-6 A Non-blocking Pop-up

Figure 4-7 Pop-up Confirmer

Figure 4-8 image _browser I .

Figure 4-9 image browser 2 ...

- XXV —

Figures — Continued

Figure 5-1 Canvas Geometry

Figure 6-1 Input Events

Figure 8-1 Text Subwindow

Figure 9-1 Associating a Menu With a Button

Figure 9-2 A Dial-Like Choice Item
Figure 9-3 iconedit’s Drawing Mode Choice Item
Figure 9-4 A Toggle Item

Figure 9-5 A Text Menu

Figure 9-6 A Typical Slider

Figure 9-7 Image Browser Subframe Using
panel_window_event ()

Figure 10-1 An Alert

Figure 10-2 A Simple Alert

Figure 10-3 A YES/NO Alert

Figure 10-4 An Alert with Boldface Message Strings
Figure 10-5 An Alert Using Triggers and Events

Figure 12-1 Layout of a Menu Item

Figure 12-2 Display Stage of Menu Processing
Figure 12-3 Notification Stage of Menu Processing

Figure 15-1 Scrolling Model

Figure 15-2 Attributes Controlling Scrollbar Appearance

Figure 15-3 Scrollbar Placement Attributes

Figure 17-1 Overview of Notification

Figure 17-2 Flow of Control in Interposition

— XXVi—

58

69

117

156
162
162
164
171
173

182

186
188
190
191
193

212
223
224

248
252
252

261
271

Audience for this Manual

How this Manual is
Structured

Tutorial

User’s Guide

Reference

SunView 1.80 Update

Preface

This manual is addressed to anyone who is interested in writing SunView pro-
grams. It assumes that the reader understands the C programming language.
Before you begin to write your own programs, read the SunView User’s Guide
and spend some time using the SunView environment to become familiar with
the tools and demonstration programs provided with SunView.!

This manual is a combination Tutorial, User’s Guide, and Reference. In addi-
tion, a companion volume describes the additions to SunView 1.80.

Chapter 4, Using Windows, serves as a tutorial introduction to SunView. As you
read and type in and finally modify its examples, you will be writing simple Sun-
View programs in the proverbial “10 minutes to SunView” time frame. You can
then read the later chapters when you need to incorporate the features they
describe into your programs.

This entire manual is the user’s guide. Start at the beginning, keep reading, and
you will understand the SunView model, how SunView programs work, and how
to create and use all the different SunView objects in your own window pro-
grams.

Chapter 19, SunView Interface Summary, lists all the attributes of the different
SunView objects and packages, and the functions and macros to operate on them.
Because of the nature of SunView and its use of an attribute value interface, it
uses a few simple calls with many attributes for them. Hence in practice this is
all the reference section you will need on a day-to-day basis.

New material concerning the features added to SunView 1.80 is published under
separate cover, as SunView 1.80 Update, part number 800-4738-01. This
material is collected in one place to make it easier for those of you who are
already familiar with SunView, and therefore only want to examine the new
features.

! These tools and demonstration programs are optional sofiware. They may not be installed on your system.
Consult Installing SunOS 4.1 for more details.

- XXvii -

Preface — Continued

Further Reading

Format of Chapters

Lists, Summaries, and the Index

This manual does not teach you how the SunView window system itself works,
only how to make working SunView applications. The former is covered, along
with many low-level, esoteric, and complex details, in the SunView System
Programmer’s Guide.

The chapters which explain the various SunView packages have a common for-
mat. Each chapter’s first page usually mentions

o what the package does
o existing SunView programs you can run to see the package in action
o header files you must include to use the package

o which are the “summary tables” for the package in the Chapter 19, SunView
Interface Summary.

The second page of most of the chapters on packages has a list of the attributes
and functions the package provides. This information doesn’t tell you what you
need to know to use the package; rather, it is intended to give you a feel for what
you can do with the package. When you are more familiar with a package, you
can go straight to its summary tables in Chapter 19 to quickly find out how to use
some attribute or function. However, there may be tricks or nuances involved in
using the package which are only covered in the chapters. You should consult
the Index before using any attribute or function that you are not familiar with.

— XXvili —

What is SunView?

Introduction

SunView (Sun Visual/Integrated Environment for Workstations) is a user-
interface toolkit to support interactive, graphics-based applications running
within windows. It consists of two major areas of functionality: building blocks
for output, and a run-time system for managing input. The building blocks
include four types of windows:

0 canvases on which programs can draw,

o text subwindows with built in editing capabilities,

o panels containing items such as buttons, choice items, and analog sliders,
o ity subwindows in which programs can be run.

Canvases, text subwindows, and panels can be scrolled.

These windows are arranged as subwindows within frames, which are themselves
windows. Frames can be transitory or permanent.

Transient interactions with the user can also take place in menus which can
“pop-up” anywhere on the screen, and in alerts.

The run-time system is based on a central Notifier in each application which dis-
tributes input to the appropriate window, and a window manager which manages
overlapping windows, distributing to the appropriate application.

The exchange of data between applications running in separate windows (in the
same or separate processes) is facilitated by a Selection Service.

The Sun implementations of graphics standards — CGI, GKS — include exten-
sions to run within windows. See the SunCGI Reference Manual, and the
SunGKS manuals, respectively, for more information.

S u Il 1 Revision A, of March 27, 1990

microsystems

2 SunView Programmer’s Guide

History
Release 3.0

Release 3.2
Release 3.4
Release 3.5

Release 4.0

SunView first appeared in SunOS Release 3.0. It is an extension and refinement
of SunWindows 2.0, containing many enhancements, bug fixes and new facilities
not present in SunWindows. SunView is upward compatible with SunWindows
— applications originally written under 2.0 can be recompiled and run under
SunView.

In Release 3.0, these changes were reflected in a new organization for the Sun-
View documentation. The material on Pixrects from the 2.0 SunWindows Refer-
ence Manual was broken out into a separate document, the Pixrect Reference
Manual. Two new documents were introduced, the SunView Programmer’s
Guide and the SunView System Programmer’s Guide.

The basic SunView interface, intended to meet the needs of simple and
moderately complex applications, is documented here. This basic interface cov-
ers the functionality of the SunWindows window and tool layers.

The companion to this document is the SunView System Programmer’s Guide.

Its contents are a combination of new and old material. Several of its chapters
document new facilities such as the Notifier, the Selection Service and the
Defaults Package. Also included is material from the old SunWindows Reference
Manual which is of interest to implementors of window managers and other
advanced applications, such as the window manager routines.

Many bug fixes and performance improvements were made to SunView for
Release 3.2. This guide was extensively revised and added to for Release 3.2.

Further bug fixes and enhancements came out with Release 3.4. These were
documented in the Release 3.4 Manual.

Release 3.5 brought support for hardware double-buffering under SunView and
pixrects.

Release 4.0 brings major enhancements to the SunView user interface — ‘Search
and Replace’ in text subwindows, shadowed frames, ‘Props’ frame menu item,
keyboard control of the caret, etc. — without involving major changes to its pro-
grammatic interface. For example, when programs that use text subwindows are
recompiled, their users will be able to use the new ‘Select Marked Text’ pop-up
frame. The alerts package is a new package for presenting information to the
user and allowing him/her to make choices based on it.

This guide was revised and reprinted again for 4.0. The major changes are the
addition of a new Alerts chapter and lists of attributes and functions at the begin-
ning of some chapters as well as in the SunView Interface Summary chapter and
Index.

S
2 S u n Revision A, of March 27, 1990

microsystems

Chapter 1 — Introduction 3

Release 4.1

Code No Longer Supported

Release 4.1 of SunOS is accompanied by Sunview 1.80, whose major features
are:

o an online help mechanism*, allowing application developers to provide
Spot Help for their users,

o programmable alarms* for dramatically notifying users,
o keyboard support
— type 4 keyboard
— upgraded description of the .textswrc file*
o enhanced color capabilities
— colored panel items™,
— support for 24-bit true color*,
o changes to the defaults database

o several user changes,

a

various bug fixes*.

Do not use DEFINE _ICON_FROM IMAGE or
DEFINE_CURSOR_FROM IMAGE as these macros may not be supported in
future releases. Instead, use icon_create() and cursor_create() to
create the icon or cursor at runtime. icon_create() is described in Chapter
14, Icons. cursor_create() is described in Chapter 13, Cursors.

The old SunWindows stacking menu package has been supplanted by the Sun-
View walking menu package, described in Chapter 12 of this document. You
should convert your applications to use the menu package, as the old package
may not be included in future releases.

The new alerts package, described in Chapter 10, replaces use of the old (undo-
cumented) menu_prompt () routine in situations where programs want to
force the user to acknowledge a message or make a choice. Alerts are more flexi-
ble and easy-to-use than menu_prompt (), and we strongly encourage you to
convert to them. Again, the old package may not be included in future releases.

1 * See the SunView 1.80 Update. This new publication, part number 800-4738-10, is an appendix to the
SunView Programmer’s Guide offering a more a detailed description of these features. It contains the update
information for both the SunView Systems Programmer’s Guide as well.

sun Revision A, of March 27, 1990

minrneuctame

4 SunView Programmer’s Guide

)
%% SUnN Revision A, of March 27, 1990

microsystems

2.1. Objects

The SunView Model

This chapter introduces the conceptual model presented by SunView, covering
such basic concepts as objects, windows and the Notifier.

It is important that you understand the material in this chapter before you begin
to write SunView applications.

SunView is an object-oriented system. Think of SunView objects as visual
building blocks which you use to assemble the user interface to your application.
Different types of objects are provided, each with its particular properties; you
employ whatever type of object you need for the task at hand.

The most important class of SunView objects are windows. Not all objects are
windows, however. Other visual objects include cursors, icons, menus and
scrollbars.

Technically, an object is a software entity presenting a functional interface. The
implementation of the object is not exposed; you manipulate an object by passing
its unique identifier, or handle, to its associated functions. The style of program-
matic interface resulting from this object-oriented approach is outlined in this
Chapter.

Figure 2-1 illustrates the different types and classes of SunView objects:

% S ll 11 5 Revision A, of March 27, 1990

mirrneuetame

SunView Programmer’s Guide

Figure 2-1

S
g

SunView Objects

Window

Icon

Subwindow

Pointer Canvas

Panel
Text
TTY

Panel Item

Scrollbar

Alert

The different types of objects are shown in normal font; the classes to which the
objects belong are labeled in italics — Subwindow, Window, and Object.

Each object type is described briefly on the next page.

S ll n Revision A, of March 27, 1990

microsystems

Chapter 2 — The SunView Model 7

Window Objects

Other Visual Objects

Window objects include frames and subwindows. Frames contain non-
overlapping subwindows? within their borders. Currently, there are four types of
subwindows provided by SunView:

[m}

[w]

m]

=]

Panel Subwindow — A subwindow containing panel items.
Text Subwindow — A subwindow containing text.
Canvas Subwindow — A subwindow into which programs can draw.

TTY Subwindow — a terminal emulator, in which commands can be given
and programs executed.

The distinctions between frames and subwindows are explained in more detail in
Section 2.3, Windows, later in this chapter.

The other types of objects, like windows, are displayed on the screen, but they
differ from windows in that they are less general and more tailored to their
specific function. They include:

w]

Panel Item — A component of a panel that facilitates a particular type of
interaction between the user and the application. Panel items can be moved,
displayed or undisplayed under program control. There are several
predefined types of items, including buttons, message items, choice items,
text items and sliders.

Scrollbar — An object attached to and displayed within a subwindow
through which a user can control which portion of the subwindow’s contents
are displayed. Both vertical and horizontal scrollbars can be attached to
panels and canvases. Text subwindows contain vertical scrollbars by default
(they cannot contain horizontal scrollbars).

Menu — An object through which a user makes choices and issues com-
mands. By convention in SunView, menus pop up when the user presses the
right mouse button. Like windows, menus appear on the screen when
needed, and disappear when they have served their purpose. Menus, how-
ever, differ from windows in several ways. First, they are more ephemeral
— a menu only remains on the screen as long as the menu button remains
depressed, 3 in contrast to a window, which remains on the screen until the
user indicates he is done or the controlling program explicitly undisplays it.
Second, menus are less flexible than windows; they are designed specifically
to allow the user to choose from among a list of actions.

2 It is SunView’s window layout policy that enforces non-overlapping subwindows, not some limitation of

the system. If you access the window system at a very low level, subwindows can overlap successfully.

3 The one exception is in the case of stay-up menus, which will appear when you click the RIGHT mouse

button and disappear when you click it again.

@ sun Revision A, of March 27, 1990

microsvstems

8 SunView Programmer’s Guide

o Alert — a box on the screen which informs the user of some condition. It
has one or more buttons which the user can push to dismiss the alert or
choose a means of continuing. Like menus, alerts are ephemeral — they
disappear as soon as the user pushes a button or otherwise dismisses the
alert. Visually, they resemble simple panels containing only images, mes-
sages, and buttons.

o Pointer — The object indicating the mouse location on the screen.
o Icon — a small (usually 64 x 64 pixel) image representing the application.
The next section gives some examples showing how typical applications make

use of SunView objects in their user interface.

2.2, Examples of the use of Figure 2-2 illustrates the mailtool(1), which uses SunView objects to provide
Objects by a mouse-oriented interface to the SunOS mail(1) program:
Applications
Figure 2-2 Mailtool

mailteol - folder: +Tech Mail
1 root@sun.com : /1842 Tech Mail
2 root@sun.com Sat Dec 5 83:15 117/3887 Tech Mail
3 spage@polar Fri Dec 4 15:23 43/1516 what size to import scrol
4 tjacobs@snowking Tue Dec 1 18:48 48/1B16 Casting
5 sages@pages Tue Nov 18 15:41 78/2177 Re: new textsw feature
6 root@sun.com Mon Oct 19 22:19 55/1671 Tech Mail
7 root@sun.com Tue Oct 28 22:21 141/4333 Tech Mail
8 spage@omega Tue Oct 28 13:82 36/1354 Re: Name completion & cmd
(Show J(Next J(Delete J[Reply](Compose} (Print J(New Mail)
File: +Tech Mail (TWisc J(Dore)
[5TFrom rootésnail Mon Dot 10 22:10:17 1087

Return-Path: <root@snail)

eceived: from snail.sun.com by zorba.sun.com (3.2/SMI-3.2)
id AA18735; Mon, 19 Oct 87 22:19:13 PDT

eceived: by snail.sun.com (4.8/SMI-3.2)
id AAB2B877; Tue, 20 Oct 87 83:00:89 PDT

|Include||ﬁe iver]("Cancel)J[(Re-address} C Disappear

i Subject: Re: Tech Mail

d | >body of message(|

Mailtool consists of a frame containing three subwindows: a text subwindow in
which the message headers are displayed, a panel containing various panel items

S
% sun Revision A, of March 27, 1990

microsystems

Chapter 2 — The SunView Model 9

Figure 2-3

(mostly buttons) through which the user can give commands to mail, and a text
subwindow which displays the current message. An additional text subwindow
and panel (shown in the figure) appear when you press the reply or compose but-
tons.

The text subwindows contain scrollbars, allowing the user to bring more infor-
mation into view.

Figure 2-3 illustrates i conedit(1), a simple bitmap editor for generating
images to be used by SunView applications:

iconedit

1conedit
@ Paint @ ciear § undo

Points: Pick points to Paint or Clear. Inage loaded.

Dir: /usr/include/images

-
a9 File: patnting_hand.pr,
L1 1)
e, (o) (5Fr0) (rase) (@D
REKAEERRERRERER
w fa™ Size { Icon Brid {3 OFf
'g .I Lt I..’ ..“- —
-~ LLU (Clear) ((Fill) (Invert)
. AuRAw "
" " » "uumm \§\
» "k KR (‘ =
.I Lo L] '.A.‘ .‘== Eg «/ - \
I. .I RN NRE R I‘II. .‘ —
‘l l- - - .
- » »n ~
N N e O Ffi11 Cborder
"o, Q Fi11 {sorder
abe Fi117:

Load Fi11 Proof

Csre Csre Osre

DEEENnN

iconedit consists of a frame and five subwindows. From upper left to lower
right they are:

o apanel containing instructions on how to use the mouse;
o & small panel for short messages;
o acanvas for drawing the image;

o apanel containing various items for issuing commands and setting options
such as the size of the image being drawn, the drawing mode, etc;

o A small canvas for viewing the icon or cursor actual size.

Revision A, of March 27, 1990

10 SunView Programmer’s Guide

None of these subwindows may be scrolled.

In Figure 2-4, the user has pushed the New Mail button, and the program brings
up a hour glass cursor (in the upper right of the text subwindow) to denote that it
is retrieving mail:

Figure 2-4 mailtool-buttons

committing changes and reteieying neg asil. .

1 root@sun.com Mon 03:26 55/1942 Tech Mail
2 root@sun.com Sat Dec 5 83:15 117/3887 Tech Mail
3 spage@polar Fri Dec 4 15:23 43/1516 what size to import scrol
4 tjacobs@snowking Tue Dec 1 18:48 48/1816 Casting
5 sages@pages Tue Nov 18 15:41 78/2177 Re: new textsw feature
> 6 root@sun.com Mon Oct 18 22:18 55/1671 Tech Mail
7 root@sun.com Tue Oct 28 22:21 141/4383 Tech Mail
6 spageComega Tue Oct 20 13:82, 36/1354 Re: Name completion & cmd
(CShow J(CRext) (DeTete) (Reply) (Compose)
G FETe)Fite: woinfo
4]/From root@snail Mon Oct 19 55119:17 1087
Return-Path: <rgot@snail> X

Received: from snail.sun%om by zorba.sun.com (3.2/SMI-3.2)
id AA18735; Mon, 19 Oct 87 22:19:13 PDT

Received: by snail.sun.com (4.8/SMI-3.2)
id AAB2877; Tue, 28 Oct 87 ©3:80:88 PDT

Date: Tue, 28 Oct 87 83:80:89 PDT

Message-Id: <8710201800.AA82877@snail.sun.com>

From: root@sun.com

Subject: Tech Mail

Apparently-To: tech-list

Status: RO

Sun Tech Mail for Tue Oct 28 83:80:84 PDT 1987

*** Requests to receive tech mail should be sent to aliases@sun, ***
¥¥ Items you wish to post to tech should be sent to tech@sun. ****

Il Tocay's Topics:
: mh wizards, anyone?
console window problem

Date: Mon, 19 Oct B7 14:54:11 PDT
From: nowicki@speed (Bi11 Nowicki)
Subject: mh wizards, anyone?

I have heard that a feature I added to sendmail for 4.8 causes mh
to break., I don't use mh, so could someone who knows what it is
doing please get in touch with me? I have a feeling it is using the -t

é« sun Revision A, of March 27, 1990

microsystems

Chapter 2 — The SunView Model 11

In Figure 2-5, the user has pressed the mouse button over the Folder panel button
in the panel:

Figure 2-5 mailtool-menus

oTe Mol

roctésur com Mor Dec 7 &9 58/1942 Tech Mail
2 roctésun.com Sat Dec § ©@3:15 117/3887 Tech Mai)
3 spage€polar Fri Dec 4 15:23 43/1516 what size to import scrol
4 tjacobs@snowking Tue Dec 1 18:4@ 4B/1816 Casting
§ sages@pages Tue Nov 10 15:41 78/2177 Re: new textsw feature
6 rootesun.com Mon Oct 19 22:19 55/1671 Tech Matl
7 rootésun.com Tue Oct 28 22:21 141/4393 Tech Matl
B spage@omega Tue Oct 20 13:82 36/1354 Re: Name completion & cmd

| +5¥DOC +SYMN
+brch_Matl | «Terminology +bugs
rom rootesna il uocument laff +notifier
Return=Path: < +personal sEUNView etarminology/ =
A etroff sunngnt +ybinfo

rrm
Received: by snail.sun.com (4.B/SMI-3.2)

id AAG2877; Tue, 20 Oct 87 83:00:88 PDT
Date: Tue, 28 Oct 87 83:60:09 POT
Message-Id: (8710201000 .AAB2077@snail.sun.comd>
From: rootlsun.com
Subject: Tech Mail
Apparently-To: tech-list
Status: RO

Sun Tech Mail for Tue Oct 28 83:89:84 PDT 1887

+ Requests to receive tech mail should be sent to aliases@sun. ***
¢**+ Items you wish to post to tach should bs sent to tech@sun. ****

Today's Topics:
B mh wizards, anyone?
console window problem

1bate: Mon, 18 Oct 87 14:54:11 PDT
rom. nowicki@speed (Bil} Nowicki)
ubject: mh wizards, anyona?

have heard that a feature I added to sendmail for 4.8 causes mh
0 break. I don‘t use mh, so could someone who knows what it is
oing please get in touch with me? I have a fesling it is using the ~t

mailtool has displayed a pop-up menu showing names of files which the user
can insert into the text item File: by selecting a file. The purpose of this menu is
to keep a current record of the mailfiles that the user has.

@ un Revision A, of March 27, 1990

microsvstems

12 SunView Programmer’s Guide

2.3. Windows

Frames

Figure 2-6

%% Sun

There are two basic classes of windows in SunView: overlapping frames, which
contain non-overlapping subwindows. This section describes the distinction
between the two.

A frame is not useful in itself — its purpose is to bring subwindows of different
types together into a common framework so they can be operated on as a unit. A
frame is said to own the subwindows it contains.

Frames may also own other frames. Thus the basic SunView structure is a
hierarchy of windows. It could also be viewed as a tree of windows in which the
non-leaf nodes are frames and the leaf nodes are subwindows.

The frame at the top of the hierarchy will be referred to in this document as the
base frame; other frames will be referred to as subframes.* Subframes are typi-
cally used to implement pop-ups, which perform auxiliary functions such as
allowing the user to set options, or displaying help text.’

Note that subframes cannot be iconified, that is, they cannot be collapsed onto an
icon.

iconedit uses a pop-up for browsing images. When the user presses the but-
ton labeled Browse, iconedit displays a pop-up which consists of a subframe
containing a single panel subwindow.

Figure 2-6 illustrates iconedit with its pop-up displayed.

A subframe
@ paint B crear B undo
Points: Pick points to patnt or clear. Natching files...
Dir: «t/iconedit_images
"I'.I.:‘=-]=‘l=I==;..'E.“§."l'.== File: =.1con
U TRl R B Tl o e Wi o
$ 8 Embeel £ B ¥ MF bt b B <
P xR R M [solomoleen]en
S . s R
E ﬁ - e w, ‘.==E=E§§.==l:l " / "v ¢ l
= !s. - --“-“‘...“ h -C‘E
‘: L3 nEENE & LU} -
I 'i.J" .. =“ /
= = .“ LN '.l l
e L] .
=. l “.‘ * .. : j
» L] 1]
NN .
1Y - 1) L3 13
Eiax I " B m A
] = l .. ‘. - :E=E v l
o B oo A R
® » L » ‘!“-“ * " .".H = ® » . -
- - A RAEMAVARYERURASEARNE BN o - -
LI IR I B e i ol B S R DO O
- L] = - » L] » . = - - L3 - - = - » - » . " - = L3
- - -
: ' " g : ' : ' 1] ‘ : ‘ L] ' - ' - ‘ - ' : g - '
. - " » . » * - *® » .] h » " » . » * - " - " -
- - L . = L] - - L] - - »
fr oy R s op R BN ORE

4 Note that while an application will usually be implemented as a single base frame (and its subwindows and
subframes), it could well include several base frames.

5 For details on pop-ups, see Section 4.5.1, Pop-ups, in Chapter 4, Using Windows.

Revision A, of March 27, 1990

microsystems

Chapter 2 — The SunView Model 13

Figure 2-7 and Figure 2-8 illustrate the structures of iconedit and mail-
tool as a tree of windows. Frames are shown as rectangles; subwindows as cir-
cles:

Figure 2-7 Structure of iconedit

Iconedit

[

base frame

message control proof browsing
panel 1 panel canvas subframe
browsin

panel

Figure 2-8 Structure of mailtool

Mailtool

reply/
compose
base frame

reply

control pane1

panel

%‘}; sun Revision A, of March 27, 1990

minrneauetame

14 SunView Programmer’s Guide

Manipulating Frames Via Frames may be manipulated programmatically by setting the frame’s attributes,

Menus as described in Chapter 4, Using Windows . Each frame also has a menu which
allows the user to manipulate the frame directly. The frame menu is invoked by
pressing the RIGHT mouse button on the exposed parts of the frame, which
include the double lines surrounding the subwindows and the black frame header
which usually appears at the top of the frame.

The menus for base frames and subframes differ slightly, as you can see from
Figure 2-9 and Figure 2-10.

The first window shows the base frame menu; the second window shows the sub-
frame menu:

Figure 2-9 Base frame menu

@ peint [B undo
POINTs: PiCK pO1ATS To Paint or Clear. Image loadea

Resi1ze » |
Front

Otr: /usr/include/in| Back
"i Praps

| Redisplay [

Quit :

File: core_sye.icon

Figure 2-10 Subframe menu

® Fasnt or @ undo
Points: Pick points to Peint or Clear. Insge loaded.

Dir: Jusr/include/mages
4 | F1re: core_eye.1con

Both menus contain the ‘Move’, ‘Resize’, ‘Front’, ‘Back’, and ‘Redisplay’ com-
mands. ‘Move’ allows the user to change the frame’s location. ‘Resize’ allows

@%& Sun Revision A, of March 27, 1990

microsystems

Chapter 2 — The SunView Model 15

Subwindows

2.4. Input: The Notifier

Callback Style of Programming

him or her to change the window’s width and height. ‘Front’ causes the frame to
move in front of the other windows, becoming fully visible on the “surface” of
the screen, while ‘Back’ does the opposite, moving the frame behind any other
windows occupying the same portion of the screen. ‘Redisplay’ simply causes
the window to be displayed again.

When the user is finished working with a base frame he may want to destroy it
for good, in which case he would choose ‘Quit’. Or he may want to ‘Close’ the
frame, with the anticipation of opening it later and continuing work where he left
off. A base frame in its closed state is represented on the screen as a small (usu-
ally 64 by 64 pixel) icon. The icon is typically a picture indicating the function
of the underlying application.

Subframes may not be closed into icons; when the user finishes with a subframe,
he simply chooses Done from the menu. While not destroying the subframe, this
causes it to disappear from the screen.

Subwindows differ from frames in several basic ways. Subwindows never exist
independently. They are always owned by a frame, and may not themselves own
subwindows or subframes. While frames can be moved freely around the screen,
subwindows are constrained to fit within the borders of the frame to which they
belong. Also in contrast to frames, subwindows are filed — they may not over-
lap each other within their frame. Within these constraints (which are enforced
by a run-time boundary manager) subwindows may be moved and resized by
either a program or a user.

So far this chapter has discussed the static aspects of the SunView model. The
section below outlines the system’s model from a dynamic point of view.

SunView is a notification-based system. The Notifier acts as the controlling
entity within a user process, reading UNIX input from the kernel, and formatting
it into higher-level events, which it distributes to the different SunView objects.

In the conventional style of interactive programming, the main control loop
resides in the application. An editor, for example, will read a character, take
some action based on the character, then read the next character, and so on.
When a character is received that represents the user’s request to quit, the pro-
gram exits. Figure 2-11 illustrates this approach:

6 SunView events are in a form which you can easily use: an ascn key has been pressed, a mouse button has
been pressed or released, the mouse has moved, the mouse has entered or exited a window, etc. Events are
described in detail in in Chapter 6, Handling Input.

%’0 S ll n Revision A, of March 27, 1990
mi

icrosystems

16

SunView Programmer’s Guide

Figure 2-11 Flow of Control in a Conventional Program

start

read
input

process
input

a{%,

quit
request
‘)

end

Notification-based systems invert this “straight line” control structure. The main
control loop resides in the Notifier, not the application. The Notifier reads events
and notifies, or calls out to, various procedures which the application has previ-
ously registered with the Notifier. These procedures are called notify procs or
callback procs. This control structure is shown in Figure 2-12.

S ll Il Revision A, of March 27, 1990

microsystems

Chapter 2— The SunView Model 17

Figure 2-12 Flow of Control in a Notifier-based Program

Application Code | Notifier
I
start :
I
I
register |
callback procs |
with Notifier |
|
|
call I
Notifier ;
|
I
! d
end [rea
’ input
!
[
| call
process | appropriate
event | callback
| procedure
I
I
I
' did
! callback No
request
quit
o
Yes
return
to application
S
%2{0 sun Revision A, of March 27, 1990
microsystems

18 SunView Programmer’s Guide

Why a Notification-Based
System?

Relationship Between the
Notifier, Objects, and the
Application

For programmers who are not used to it, this callback style of programming takes
some getting used to. Its big advantage is that it takes over the burden of manag-
ing a complex, event-driven environment. In SunView, an application typically
has many objects. In the absence of a centralized notifier, each application must
be responsible for detecting and dispatching events to all the objects in the pro-
cess. With a centralized Notifier, each component of an application receives only
the events the user has directed towards it.

It is not necessary for you to interact with the Notifier directly in your applica-
tion. SunView has a two-tiered scheme in which the packages that support the
various objects — panels, canvases, scrollbars, etc. — interact with the Notifier
directly, registering their own callback procedures. The application, in turn,
registers its own callback procedures with the object.

Typically, when writing a SunView application you first create the various win-
dows and other objects you need for your interface, and register your callback
procedures with the objects. Then you pass control to the Notifier. The work is
done in the various callback procedures.

Let’s illustrate the relationship of the Notifier, the SunView objects and the
application by taking iconedit as an example. Figure 2-13 illustrates how the
Notifier receives UNIX input and calls back to iconedit’s subwindows, which
in turn call back to procedures supplied by iconedit.

S u n Revision A, of March 27, 1990

microsystems

Chapter 2 — The SunView Model 19

So~Ls3cWw

Figure 2-13

Flow of Input Events in iconedit, a SunView Application

user types, moves mouse, presses mouse buttons...

\

/

UNIX events: input on file descriptors

N/

Notifier

Jormats UNIX input into SunView events,
passes each event to the event procedure

of the appropriate window

Control
Panel

=00 350 6

-

notify proc
for item 1

]

SunView events

y

Drawing
Canvas

Proof
Canvas

event
procedures
for
subwindows

notify proc
for item n

iconedit’s notify procedures
for panel items

% Sun

microsystems

event proc
for
Drawing
Canvas

event proc
for
Proof

Canvas

iconedit’s
event
procedures

Revision A, of March 27, 1990

20 SunView Programmer’s Guide

Calling the Notifier Directly

4

The main point of the diagram on the preceding page is to make clear the
double-tiered callback scheme. How you register the callback procedures will be
explained in the chapters on panels and canvases.

One point worth mentioning is the distinction between the “event procedures” for
the canvases and the “notify procedures” for the panel items. They are all call-
back procedures, but they have different purposes. The canvas’s event procedure
doesn’t do much work — basically it calls out to the application’s event pro-
cedure each time an event is received. The application sees every event and is
free to interpret the events however it likes.

The event procedure for panels, on the other hand, does quite a bit of processing.
It determines which item should receive the event, and places its own interpreta-
tion on events — the middle mouse button is ignored, left mouse button down
over an item is interpreted as a “tentative” activation of the item, etc. It does not
call back to the notify procedure for the item until it receives a left mouse button
up over the item. So panel item notify procedures are not so much concerned
with the event which caused them to be called, but with the fact that the button
was pushed, or a new choice made, etc.

As mentioned previously, for many applications you will not need to call or be
called by the Notifier directly — the Notifier calls back to the subwindows,
which in turn call back to your application.

However, if you need to use signals, or be notified of the death of a child process
which you have spawned, you do need to call the Notifier directly.

The Notifier also provides calls which allow you to insert your own routine in the
event stream ahead of a window. This technique is known as interposition.

When and how to call the Notifier directly is covered in Chapter 17, The Notifier.

sSsun Revision A, of March 27, 1990

microsystems

SunView Libraries

NOTE

Compiling SunView Programs

Header Files

¢

Interface Outline

This chapter outlines the SunView interface, the SunView libraries, header files,
object handles, attributes and the standard functions applicable to objects of each

type.

The SunView functions that an application calls are mostly in the library file
/usr/1lib/libsuntool.a if you are using the archive libraries and
/usr/1lib/libsuntool. so if you are using the shared libraries. These
libraries include the code to create and manipulate high-level objects such as
frames, panels, scrollbars and icons. These packages in turn call routines in
/usr/lib/libsunwindow.a or /usr/lib/libsunwindow. so to
create and manipulate windows and interact with the Notifier. These in turn call
routines in /usr/1ib/libpixrect.a or /usr/lib/libpixrect.so
that do the drawing on the screen.

Shared libraries were introduced in SunOS 4.0. The main benefit to using shared
libraries is that the executables are much smaller (for example, 24K instead of
1Mb for textedit alone) because the libraries are loaded dynamically at runtime
and are subsequently shared by other executables. Additionally, when the shared
libraries are recompiled, new functionality is added, or bug fixes are made, the
client applications don’t need to be recompiled and linked unless the . so or an
interface changed. For more information on shared libraries, see Programming
Utilities and Libraries.

To compile a SunView program you must link in these three libraries, and,
because they are built one on top of another, their order is important. For exam-
ple, to compile a typical SunView application whose source is myprog. c, you
would type in the command:

[% cc -0 myprog myprog.c -lsuntool -lsunwindow -lpixrect]

The basic definitions needed by a SunView application — covering windows,
frames, menus, icons and cursors — are obtained by including the header file
<suntool/sunview.h>. Definitions for the other types of object are found
in their own include files — <suntool /canvas.h>, <suntool/text.h>,
<suntool /panel.h>, etc.

sun 21 Revision A, of March 27, 1990

microsystems

22 SunView Programmer’s Guide

Object Handles

Attribute-based Functions

When you create a SunView object, the creation function returns a handle for the
object. Later, when you wish to manipulate the object or inquire about its state,
you pass its handle to the appropriate function. This reliance on object handles is
a way of information-hiding. The handles are opaque in the sense that you can’t
“see through™ them to the actual data structure which represents the object.

Each object type has a corresponding type of handle. The window types of
Frame, Canvas, Textsw, Tty and Panel are grouped under the type Win -
dow. So, for example, you can declare a panel as either a Panel or a Window,
whichever is most appropriate. The other object types are Panel item, Menu,
Scrollbar, Cursor, and Icon.

Since C doesn’t have an opagque type, all the opaque data types mentioned
above are typedef’d to the UNIX type caddr_t (for “character address
type”), which in tum is typedef’dto char *.

In addition to the opaque data types, there are several typedefs which refer not
to pointers but to structures: Event, Pixfont, Pixrect, Pixwin, Rect,
and Rectlist. Generally pointers to these structures are passed to SunView
functions, so variables in a user program are declared as Event *, Pixwin
%, etc. The reason that the “*” is not included in the typedef is that the struc-
tures are publicly available, in contrast to the object handles, which include the
“*> and which refer to structures that are not publicly available.

The SunView data types are summarized in Chapter 19, SunView Interface Sum-
mary.

Problems can arise when a SunView function call to create an object (frame,
panel, or panel_item for example) returns NULL. You cannot blindly use such a
pointer without first checking whether it is NULL. Although it is common prac-
tice not to check pointers, and usually does not create problems, it is careless pro-
gramming and can lead to trouble. (Sadly, the examples in this manual do not
always conform to this principle.)

A model such as that used by SunView, which is based on complex and flexible
objects, presents the problem of how the client is to manipulate the objects. The
basic idea behind the SunView interface is to present a small number of func-
tions, which take as arguments a large set of attributes.

For a given call to create or modify an object, only a subset of the set of all appli-
cable attributes will be of interest. So that only the relevant attributes need be
mentioned, SunView functions make use of variable-length attribute lists., An
attribute list consists of attribute/value pairs, separated by commas, and ending
with a zero.

Each type of object has its own set of attributes. The attributes have prefixes
which indicate the type of object they apply to, i.e. FRAME_*, TEXTSW_*,
CANVAS_*, TTY_*, PANEL_*, MENU_*, CURSOR_*, ICON_*, SCROLL_*,
etc.

In addition to the sets of attributes applying to each type of object, there is a set
of window attributes of the form WIN_* which apply to all window objects.
These are attributes such as WIN _HEIGHT and WIN WIDTH, which apply to all

S u I] Revision A, of March 27, 1990

microsystems

Chapter 3 — Interface Outline 23

Standard Functions

Example of SunView-Style
Programming

Attribute List Size

windows regardless of whether they happen to be panels, canvases, etc.

For objects of all types there is a set of standard functions to create and destroy
the object and to get and set the object’s attributes.

Window functions are prefixed with window_, yielding

o window_create(),

o window_get(),

o window_set(),and

o window_destroy().

Providing common window functions reduces the complexity of the interface.
Non-window functions are prefixed with the name of the object. So, to take
menus as an example, the standard functions are

0 menu_create(),

0O menu_get(),

o menu_set(),and

o menu_destroy().

The flavor of the interface is illustrated with the following code fragment, which

creates a scrollbar with a width of 10 pixels and a black bubble. Later, the
scrollbar’s width is changed to 20 pixels. Finally, the scrollbar is destroyed:

4 N
Scrollbar bar;
bar = scrollbar_ create(SCROLL_WIDTH, 10,
SCROLL_BUBBLE_COLOR, SCROLL_ BLACK,
0):

scrollbar_set(bar, SCROLL_WIDTH, 20, 0);
scrollbar_destroy(bar);

g J

Note the zero which terminates the attribute lists in the *_create() and

* set () calls. The most common mistake in using attribute lists is to forget
the final zero. This will not be flagged by the compiler as an error; however, it
will cause SunView to generate a run-time error message.

As you can see from the example above, you can specify several attributes in a
single *_create() or *_set () call. The maximum length of attribute lists
in SunView is 250; see Maximum Attribute List Size in Chapter 18, Attribute
Utilities.

S u n Revision A, of March 27, 1990

microsystems

24 SunView Programmer’s Guide

Reserved Namespaces SunView reserves names beginning with the object types, as well as certain other
prefixes, for its own use.

The prefixes listed below should not be used by applications in lower, upper, or
mixed case. Also there are symbols not covered by this table that are listed in the
#include files, for example: TRUE, FALSE, True, False, strdup,
strequal, ord, FOREVER.

Check the #include files before naming any global variables in your applica-
tion.

Table 3-1 Reserved Prefixes

ACTION_ icon_ scroll_
alert_ menu_ seln_
attr_ notify textsw_
canvas_ panel__ text
cursor_ pixrect_ toolsw_
defaults_ pixwin_ tool
ei pr_ ttysw_
es__ pw_ tty_
event_ rect_ window_
ev_ rl_ win_
frame_ scrollbar_ wmgr_
help

S ll Il Revision A, of March 27, 1990

microsystems

Table 4-1

Summary Listing and Tables

Using Windows

This chapter describes how to build SunView applications out of frames and
subwindows.

The first section presents the basic window routines. Succeeding sections give
examples, ranging from the simplest possible application to a moderately useful
file manager. For quick reference, the examples are given in the table below:

Window Usage Examples

Example Description Hllustrates
hello_world Minimal SunView program. Compilation, frames
simple_panel Panel w/message and button. Basic attributes, pancls
lister Frontendto Is Panels, tty subwindows
filer File manager Pop-ups, Selection Service
image_browser 1 Displays images Subwindow layout
image _browser 2 Displays images Row/column space

To give you a feeling of what you can do with frames and subwindows, the fol-
lowing page lists the available window and frame attributes, functions and mac-
ros. Many attributes are discussed as they occur in the examples, and in other
chapters (use the Index to check). However, this chapter does not attempt com-
plete coverage of all the attributes. All are briefly described with their arguments
in the window and frame summary tables in Chapter 19, SunView Interface Sum-
mary:

o the Window Attributes,
o the Frame Attributes,
o the Window Functions and Macros,

o the Command Line Frame Arguments.

% S u n 25 Revision A, of March 27, 1990

microsvstems

26 SunView Programmer’s Guide

Window Attributes

WIN_ BELOW WIN FIT WIDTH WIN PERCENT WIDTH

WIN_BOTTOM MARGIN WIN_FONT WIN PICK_INPUT MASK

WIN CLIENT_ DATA WIN_GRAB_ALL_INPUT WIN PIXWIN

WIN_COLUMNS WIN_HEIGHT WIN RECT

WIN COLUMN_GAP WIN_HORIZONTAL SCROLLBAR WIN RIGHT MARGIN

WIN COLUMN_WIDTH WIN_IGNORE_KBD_ EVENT WIN_RIGHT OF

WIN CONSUME KBD EVENT WIN_IGNORE_KBD_EVENTS WIN_ROW_GAP

WIN_CONSUME_KBD EVENTS WIN_IGNORE_PICK_EVENT WIN_ROW_HEIGHT

WIN_CONSUME_PICK_EVENT WIN_IGNORE_PICK_ EVENTS WIN_ROWS

WIN_CONSUME_PICK_EVENTS WIN_INPUT DESIGNEE WIN SCREEN_ RECT

WIN_CURSOR WIN_KBD_ FOCUS WIN_SHOW

WIN DEVICE NAME WIN KBD INPUT MASK WIN_TOP MARGIN

WIN _DEVICE NUMBER WIN_LEFT MARGIN WIN_TYPE

WIN ERROR_MSG WIN_MENU WIN VERTICAL SCROLLBAR

WIN EVENT PROC WIN_MOUSE_XY WIN WIDTH

WIN_EVENT_ STATE WIN_NAME WIN X

WIN_FD WIN_OWNER WIN_Y

WIN_FIT HEIGHT WIN_ PERCENT HEIGHT

Frame Attributes

FRAME_ARGS FRAME_DEFAULT DONE_PROC FRAME_NO_CONFIRM
FRAME ARGC_PTR_ARGV FRAME_DONE_PROC FRAME_NTH_SUBFRAME
FRAME_BACKGROUND COLOR FRAME_EMBOLDEN LABEL FRAME_NTH_SUBWINDOW
FRAME_CLOSED FRAME_FOREGROUND_COLOR FRAME_NTH_WINDOW
FRAME_CLOSED RECT FRAME_ICON FRAME_OPEN_RECT
FRAME_CMDLINE_HELP_ PROC FRAME INHERIT_ COLORS FRAME_SHOW_LABEL
FRAME_CURRENT RECT FRAME_LABEL FRAME_SUBWINDOWS ADJUSTABLE

Window Functions and Macros

window_bell(win) ’ window_get(win, attribute)
window_create(owner, type, attributes) window_loop (subframe)
window_default_event_ proc(window, event, arg) window _main_loop(base_ frame)
window_destroy(win) window_read_event(window, event)
window_done(win) window_refuse_kbd_focus(window)
window_fit(win) window_release_event_lock(window)
window_fit height(win) window_return(value)
window_fit width(win) window_set(win, attributes)

@% S un Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 27

4.1. Basic Routines

Creating a Window

Initiating Event Processing

Modifying and Retrieving
Window Attributes

This section introduces the basic routines for using windows. It explains how to
create, modify, and destroy windows.

You create all windows with the function:

Window
window_create(owner, type, attributes)
Window owner;

<window type> type;
<attribute-list> attributes;

If you recall from Chapter 2, The SunView Model, a SunView application is
implemented as a hierarchy of frames. Each frame owns one or more subwin-
dows. The frame at the top of the hierarchy (the base frame) will have a null
owner. In the above function, the owner parameter is the handle of the window
to which the window returned by window_create () will belong. The type
parameter is the type of the new window; for example, FRAME, PANEL,
TEXTSW, CANVAS, or TTY.

A very simple example of this function would be to create a panel belonging to a
frame called base_frame, you would use:

Panel panel;
window_create(base_ frame, PANEL, 0);

The window_create () call does not display the frame on the screen. You
bring it to life after creating a base frame and its subwindows and subframes, by
calling window main_ loop(base_frame). This call displays the frame
on the screen and begins processing the events by passing control to the Notifier.
Chapter 2, The SunView Model, gave a brief explanation of the Notifier.

Keep in mind that subframes are treated different from base frames because they
are not tied to the base frame that is activated in the window_main_loop()
call. In addition, if you create a subframe with WIN_SHOW set to TRUE, when
the user tries to manipulate the subframe ‘garbage’ data will appear on the
screen.

You modify and retrieve the value of window attributes with the following two
functions:

int

window_set(window, attributes)

Window window;
<attribute-list> attributes;

caddr_t

window_get(window, attribute)
Window window;
Window_attribute attribute;

@;%? sun Revision A, of March 27, 1990

microsystems

28 SunView Programmer’s Guide

Destroying Windows

NOTE

Ifyou call window_get () and specify an inappropriate attribute, a zero will
be returned. For example, a sub frame cannot be closed. Therefore, the call
window_get(sub_frame, FRAME_CLOSED_RECT) will not work, so the
value returned will be zero. A segmentation violation will occur if an attempt is
made to dereference the return value.

When you get a pointer back from window_get (), the pointer points into a
private data structure, whose contents may change.’

You destroy windows with the following two functions:
int
window_destroy(window)
Window window;

int
window_done(window)
Window window;

The difference between these two is that window_destroy () destroys only
window and its subwindows and subframes. window_done(), on the other
hand, destroys the entire hierarchy to which the subwindow or subframe belongs.

When window_destroy () is called on a window, the corresponding file
descriptors cannot be used again until the Notifier is called. The file descriptor
associated with the window is not reclaimed until the notifier has a chance to dis-
tribute notifications again.

The way window_destroy () works is that it asks the window owner if it is
willing to be destroyed. If so, it queues up a notification procedure to destroy the
window. This delay protects the program from destroying a window that is being
accessed in the current call stack. You can work around this restriction, assum-
ing you never reference this window again, by calling

notify flush pending() after calling window_destroy().

7 For most attributes the pointer retumed by window_get () points into per-window storage, but for some
the storage is static, per-process data. These attributes are flagged in the tables Chapter 19, SunView Interface
Summary.

S u n Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 29

4.2. Example 1— In learning a new programming language or environment, it usually helps to
hello_world begin with a small program that simply prints some output. By creating, compil-
ing, loading, and running the program, you will master the mechanical details.
Here is a small SunView program:

(JrR Rk AR KRR IKR KRR KR AR KRR KRR KA AR KRR K KRR AR KRR A KRR ARk kK /)
/* *x/
/* hello_world.c *x/
/* */
/**/
/% */
/* This program will display a single frame with */
/* the words "hello world" x/
/* in the frame header. You can close, move, resize, */
/* hide, redisplay, or quit this window. *x/
/* x/

/**/

#include <suntool/sunview.h>
main ()
{
Frame frame;
frame = window_create (NULL, FRAME,
FRAME LABEL, "hello world",
o),
window_main_loop (frame) ;

\ y

After you create the above program in a file called hello_world. c, you com-
pile it with the command:

Where,

o hello_world is the executable output file that will be created

o -lsuntool specifies to link with the suntool object library

o -lsunwindow specifies to link with the sunwindow object library
o -lpixrect specifies to link with pixrect object library

After you compile the program, type “hello_world”, and the window will come

up as shown in Figure 1-1 — a single frame with the words “hello world” in the
frame header:

@ sun Revision A, of March 27, 1990

microsystems

30 SunView Programmer’s Guide

Figure 41 Hello World Window

_

This window is “alive” within the SunView user interface; it can be closed,
moved, resized, hidden, etc. When closed, a default icon is displayed, which
e contains the text from the frame header.

‘9 sSun Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows

31

4.3. Example 2—

The next program is more complex than the first program. It creates a frame that
simple_panel contains a frame label and a panel that contains a panel button and a message.

This program also includes an image that appears when the window closes down
to an icon. Some basic attributes dealing with fonts, icons, help, error messages

and parsing command-line flags are introduced.

L

/************************'k*************************************t***********/

/* */
/* simple panel.c */
/* */

/*******************************'k**/
/***********************************‘k**************************************/
/% */
/* This program displays a frame with the frame label "hello_world _panel" */
/* and a panel which contains the panel message "Push button to quit" and #*/

/* a panel button "Good-bye". The user of this application has the */
/* ability to close, move, resize, hide, redisplay, or quit the window. */
/* */

/***************************'k*********‘k************************************/

#include <stdio.h>
#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntool/icon.h>
static void quit_proc();
Frame frame;
Panel panel;
Pixfont *bold;
Icon icon;
static short icon_image[] = {
#include <images/hello world.icon>
}i
mpr_static(hello world, 64, 64, 1, icon_image);
main(argc, argv)
int argc; char **argv;
{
bold = pf_open("/usr/lib/fonts/fixedwidthfonts/screen.b.12");
if (bold == NULL) exit(l);
icon = icon_create(ICON_IMAGE, &hello world, 0);
frame = window create(NULL, FRAME,

FRAME_LABEL, "hello_world_panel",
FRAME_ ICON, icon,

FRAME_ARGS, argc, argv,
WIN_ERROR_MSG, "Can’t create window.",
0);

panel = window create(frame, PANEL, WIN FONT, bold, 0);

panel create_ item(panel, PANEL_ MESSAGE,
PANEL_LABEL_STRING, "Push button to quit.", 0);

panel_create_item(panel, PANEL BUTTON,
PANEL LABEL IMAGE, panel button image(panel, "Good-bye", 0, 0),
PANEL_NOTIFY PROC, quit_proc,
0);

window_fit(panel);

window_fit(frame);

window_main_loop (frame);

}

static void

_/

&@% S u n Revision A, of March 27, 1990

microsystems

32 SunView Programmer’s Guide

quit_procy)

{
window_set (frame, FRAME_NO_ CONFIRM, TRUE, 0);
window_destroy(frame);

This program creates a frame containing a single panel with a message and a but-
ton:

Figure 42 Hello World Panel

hello world panel

Push button to qguit.

The features and attributes used in the above program are discussed below.

Some Frame Attributes The attributes are discussed below in the order that they appear in the above
panel.
FRAME_LABEL The string given as the value for FRAME_LABEL will appear in a black frame

header strip at the top of the frame. If you do not want the label and the frame
header to appear, then set the attribute FRAME_SHOW_LABEL to FALSE.

FRAME_ICON The program used FRAME_ICON to specify the icon to be shown when the frame

is closed. This is done by first using the macro mpr_static() to define a
static memory pixrect to contain this data, with hello wor1d as the name of
the pixrect. The next three arguments specify the width, height, and depth of the
image. Typically, for an icon, this is 64, 64, and 1. The final argument is an
array of shorts that contains the bit pattern of the icon image. It takes its image
from the file /usr/include/images/hello_world. icon. This stati-
cally defined image is passed to icon_create() at runtime.

The application uses FRAME__ARGSS to pass command-line arguments given by
the user to the frame. A set of command line arguments are recognized by all
frames. These arguments allow the user to control such basic attributes as the
frame’s dimensions and label and whether the frame’s initial state is open or
closed, etc. These arguments begin with -W; for a complete list of them see the
Command Line Frame Arguments table in Chapter 19, SunView Interface Sum-
mary.

§ As an alternative to FRAME_ARGS, you can use FRAME_ARGC_PTR_ARGV, which takes a pointer to
argc, rather than argc itself. This attribute causes window_create() to strip all arguments beginning
with -W out of argv, and decrement argc accordingly.

ég@ S ll n Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 33

WIN_ERROR_MSG

Panels

Fonts

Panel Items

Notify Procedure

Window Sizing —
window_fit()

NOTE

4

WIN_ERROR_MSG provides a simple form of error checking. If this attribute is
not specified, then window_create () will return O on failure. If a value for
WIN_ERROR_MSG is specified and window_create () fails, then it will print
the error message on stderr and exit with a status of 1.

The panel is created by calling window create () with the previously created
frame as the owner and PANEL as the window type.

By default, text in the panel is rendered in the default system font, which
window_create() obtains by calling pf_default (). The program
specified a font by first opening the font with pf_open (), and then passing it
into the panel as WIN_FONT.

In the SunView context, setting WIN_FONT is not equivalent to specifying a font
at run time with the -Wt command-line argument: -Wt sels the default system
Jont, WIN_FONT does not. The only window types that currently make use of
WIN_FONT (o render characters are panels and text subwindows.

The panel contains two panel items: the message saying “Push button to quit.”
and the Goodbye button. They are created with panel_create_item().

The concept of callback procedures was introduced in Chapter 2, The SunView
Model. Callback procedures for panel items are known as notify procedures.

The program registered its notify procedure quit_proc () with the Goodbye
button using the attribute PANEL. NOTIFY PROC. quit_proc() is called
when the user selects the button. It in turn calls window_destroy (), which,
as explained in the earlier subsection on Destroying Windows, causes
window_main_loop() toreturn. Before calling window_destroy(), it
disables the standard SunView confirmation by setting the attribute
FRAME_NO_ CONFIRM for the frame.

The final feature illustrated by the example is the use of the window fit ()
macro. This macro causes a window to exactly fit its contents.

The contents of a panel are its panel items; the contents of a frame are its subwin-
dows. Therfore, the example program calls window_fit () twice, first fitting
the panel around its two items, then fitting the frame around its panel.

Awindow_fit width() macroand awindow_fit height () macro
are used to permit adjusting in only one dimension. These correspond to the
window attributes WIN_FIT WIDTH and WIN_FIT HEIGHT.

9 For details on fonts see the Pixrect Reference Manual.

sun Revision A, of March 27, 1990

microsystems

34 SunView Programmer’s Guide

Fitting Frames Around
Subwindows

4.4. Example 3— lister

Figure 4-3

Since Release 3.2, if you use window_fit () or its variants for sizing the
width and height of a frame, you need to be careful that the subwindows have
some specified size, or they will be shrunk very small by the window_fit()
call. Usually you give a subwindow a fixed size in one or both dimensions, or
size it to be a percentage of the frame’s size. The default size of a frame is that it
encloses an area 34 rows by 80 columns in its default font.

Figure 4-3 illustrates a program to help manage files. The first version simply
lets the user list files in the current directory, forming a front-end to the 1s(1)
command;

lister

Fite: *.q
oral® 1s *.c
briggs_tools.c filer_save.c ileaf.c order_test2.c
anvas_demo.c gsh_panel.c items_demo.c order_test3.c
onfirm.c hello_world.c lister.c order_testd4.c
g_cycle.c hello_world2.c lockscreen.c panel.c
dirtool.c helper_save.c margin_test.c panel_text.c
filer.c helper_versionl.c misc_merge.c sunvieu_manual.c
filer3_save.c icon_test.c order_testli.c
oral®

The tool presents two subwindows. The top subwindow is a control panel with a
text item. It contains a place to specify the files to be listed, a List button, and a
Quit button.

Below the control panel is a tty subwindow. When the user pushes the List but-
ton, the program constructs a command string consisting of the string “Is ”, fol-
lowed by the value of the File: item, followed by a newline, and inputs the com-
mand string to the tty subwindow by calling ttysw_input(}.

The program is listed in its entirety below.

Notice that the frame, the panel and the tty subwindow are all declared as type
Window. They could just as well have been declared as type Frame, Panel
and Tty.

4 S ll Il Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 35

/************‘X***/ W
/* */
/* lister.c */
/* */

/*‘k*****'k**/
/**/

/* */
/* This program helps the user to manage files. The user is */
/* able to list the files in the current directory. This *x/

/* application consists of two subwindows. The first subwindow */
/* consists of a list and a quit button. This subwindow is the */
/* control panel of the application. The second subwindow, */
/* the tty subwindow, is directly below the control panel. This*/
/* tty subwindow lists the files specified. The user also has */
/* the ability to close, move, resize, hide, redisplay, or gquit #*/
/* the window. *x/
/* */

/**************************'k***********************************'k*/

#include <suntool/sunview.h>
#include <suntool/panel.h>
#include <suntool/tty.h>
Window frame, panel, tty;
Panel_item fname_item;
static void 1ls proc(), quit_proc();
main(argc, argv)
int argc; char **argv;
{
frame = window_create(NULL, FRAME,
FRAME ARGS, argc, argv,
FRAME LABEL, "lister",
0);
panel = window_create(frame, PANEL, 0);
create panel items();
tty = window_create(frame, TTY, 0);
window_main_loop(frame);
exit (0);
]
create_panel items()
{

fname item = panel create_item(panel, PANEL_TEXT,

PANEL_LABEL_STRING, "File: ",
PANEL_VALUE_DISPLAY LENGTH, 55,
0);

panel create_ item({panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE, panel_button_image(panel, "List", 5, 0),
PANEL NOTIFY PROC, ls_proc,
0);
panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE, panel_button_image(panel, "Quit", 5, 0),
PANEL NOTIFY PROC, quit_proc,
0);
window_fit height (panel);
]
static void
1s_proc(/* ARGS UNUSED */)
{
char cmdstring[256];

S

@{?Q sun Revision A, of March 27, 1990

microsystems

36

SunView Programmer’s Guide

]

{
1

/* sprintf(cmdstring, "ls %s n", panel_get value(fname_item));*/
/* vmh - 1/90 */
sprintf(cmdstring, "ls %s 0, panel_get_value(fname_item));

ttysw_input(tty, cmdstring, strlen(cmdstring));

static void
quit_proc(/* ARGS UNUSED */)

window_destroy(frame);

4.5. Example 4— filer Our next example builds on the simple front end to 1s given in the previous

example to create a more interesting file manipulation tool. This application
illustrates the use of the text subwindow, the Selection Service, and pop-ups —
windows that appear on the screen and disappear dynamically during execution
of a program.

In appearance, filer is similar to lister, in that it contains a control panel and tty
subwindow. The user specifies the directory and file, and pushes the List Direc-
tory button, causing the 1s command to be sent to the tty subwindow:

Figure 4-4 filer

‘[List D1rect0£zj (Set 1s flags] (Edit) |591ete| |ﬂuit|

jF111ng Mode: O Use "File:" item

{Directory: /usr/view/doc/app/code

§/usr/v1ew/doc/app/coda/conf1rm.c
I/usr/view/doc/app/code/dctool .c
1/usr/view/doc/app/code/filer.c
|/usr/view/doc/app/code/font_menu.c
|/usr/view/doc/app/code/hello_world.c
i/usr/view/doc/app/code/image_browser_1.c
l/usr/view/doc/app/code/image_ browser 2.¢c
‘/usr/v1ew/doc/app/code/]1ster c
{/usr/view/doc/app/code/menugenproc .c
l/usr/view/doc/app/code/resize_demo.c
l/usr/view/doc/app/code/seln_demo.c
i/usr/view/doc/app/code/showcolor.c
#/usr/view/doc/app/code/simple_canvas.c
l/usr/view/doc/app/code/simple_panel.c
/usr/view/doc/app/code/spheres.c
i/usr/view/doc/app/code/tty_io.c
I/usr/view/doc/app/code/typein.c

There are three new buttons, each of which illustrates a typical use of pop-ups:

@ sun Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 37

Pop-ups

Pop-up Text Subwindow

Figure 4-5

Set Is flags a pop-up property sheet for setting options to 1s;
Edit a pop-up text subwindow for browsing and editing files;
Delete a pop-up confirmer which forces the user to confirm or cancel.

The three buttons are discussed in the pages that follow. The discussion makes
reference to specific routines in the filer program, which is listed in its entirety as
filer in Appendix A, Example Programs.

In SunView, pop-ups are implemented as subframes containing subwindows.
The subframe, along with its subwindows, is displayed and undisplayed as
needed. Pop-ups may be displayed in either a blocking or a non-blocking mode.
Examples of SunView pop-ups include the mailtool’s composition window
and textedit’s search and replace.

The Edit button illustrates a non-blocking pop-up. When the user selects a
filename and presses the button, a pop-up text subwindow containing the file
appears:

A Pop-up Text Subwindow

(List Directory] [Set s flags) |Edit| |De1ete| |Qu1t|

Filing Mode: O Use "File:" item

Directory: /usr/view/doc/app/code
File: confirm.g

/usr/view/doc/app/code/confirm.c
/usr/view/doc/app/code/dctool .c

static Frame init_confirmer();
confirm();
yes_no_ok();

confirm_yes(message)

Both the subframe and text subwindow for the pop-up are created at initialization
time with the calls:

@% sun Revision A, of March 27, 1990
3

microsystems

38 SunView Programmer’s Guide

Pop-up Property Sheet

4

edit_frame = window_create(base_frame, FRAME,
FRAME_SHOW_LABEL, TRUE,
0):;

editsw = window_create(edit_frame, TEXTSW, 0);

When the user selects the Edit button, the notify procedure edit_proc() is
invoked. This function first calls the Selection Service to get the name of the file
the user has selected.

It then loads the file into the text subwindow, sets the frame header to the
filename, and displays the frame with these two calls:

window_set(editsw, TEXTSW_FILE, filename, 0);
window_set(edit_frame, FRAME_LABEL, filename, WIN_SHOW, TRUE, 0);

The property sheet shown in Figure 4-6 is a typical example of a non-blocking
pop-up. By pushing the Set Is flags button, the user can get a property sheet
which allows him to set some of the options to the 1s command. While the pro-
perty sheet is displayed, the user can continue to interact with the application,
setting options now and then. The user can cause the pop-up to disappear at any
time by pushing the Done button, selecting Done from the subframe’s menu, or

sun Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 39

Figure 4-6

Invoking the ‘Props’ Menu Item

@?

by pressing the SunView function key labelled (Open).

A Non-blocking Pop-up

(Cist Directory] [Set 1s flags) (Edit) (Delete) (Quit)

Filing Mode: & Use "File:" item

Directory: /usr/view/doc/app/code
File: canfirm.%

/usr/view/doc/app/code/confirm.c
/usr/view/doc/app/code/dctool .c
/usr/view/doc/app/code/filer.c

/usr/view/q

Options for 1s command

/usr/viewlw Format: £ short
/usr/view/q . ~
/usr/view/[8°rt Order: ::Descending
fusr/view/d Sort criterion: C Name
/usr/view/d For directories, list: £ Contents
fusr/view/ Recursively list subdirectories? O No
fusr/view/ i ~
Jusr/viewsd Indicate type of file? < No
/usr/view/é

Jusr/view/d

fusr/view/doc/app/co -~
/usr/view/doc/app/code/typein.c
Ipolar% 0

Two attributes are used to control whether the ‘Props’ menu item is active or able
to be invoked in the frame’s menu. The code fragment given below is taken
from the filer program.

The FRAME PROPS_ACTION_PROC attribute specifies which procedure will
be called when the ‘Props’ menu item is chosen or the key is pressed. In
the code below, FRAME_PROPS_ACTION_PROC specifies that the procedure
1s_flags_proc() is called when the key is pressed.

The FRAME PROPS_ACTIVE attribute specifies whether the procedure that is
specified by the FRAME_PROPS_ACTION_PROC will be called or not. If the
attribute FRAME_ PROPS_ACTIVE is TRUE, then the frame menu will contain
an un-greyed ‘Props’ menu item. If the attribute FRAME PROPS_ACTIVE is
FALSE, then the frame menu will contain a greyed out ‘Props’ menu item.

-
base frame = window_create(NULL, FRAME,)
FRAME_ARGS, argc, argv,
FRAME LABEL, "filer",
FRAME PROPS_ACTION_PROC, 1ls_flags_proc,
FRAME PROPS_ACTIVE, TRUE,
0);
g _J
sun Revision A, of March 27, 1990

microsystems

40 SunView Programmer’s Guide

WIN_SHOW

Pop-up Confirmer

The display of a non-blocking pop-up is controlled using the WIN_SHOW attri-
bute. The initialization routine create_1s_flags_popup () creates the
subframe, panel, and panel items for the property sheet. When the subframe is
created, WIN_SHOW is FALSE.!0 The notify procedure for the Set Is flags but-
ton, 1s_flags_proc(), simply sets WIN_SHOW to TRUE for the subframe.!!

When the notify procedure for the List Directory button, 1s_proc(), is called,
it calls compose_1s_options() to construct the appropriate string of flags
based on the settings of the items in the property sheet.

Both the property sheet and the editing subwindow described in the preceding
section are examples of non-blocking pop-ups, in which the application contin-
ues to receive input while the pop-up is displayed.

Blocking pop-ups differ in that, when displayed, they receive all input directed to
the screen. Blocking pop-ups are appropriate when you want to force the user to
confirm or cancel an irreversible operation before changing the application’s
state in any way.

Most uses of blocking pop-ups should use the alert package described in Chapter
10, Alerts. In the example given below, filer uses an alert for the Delete button
confirmation. However, if you want to use other panel features, or other kinds of
windows, then you can use window_loop () for the same effect.

For example, in Figure @ NumberOf{(alert-win), when the user makes a selection
and pushes the Quit button, filer displays a pop-up asking for confirmation. All
input is directed into this confirmer, and the user is forced to either accept the
deletion by selecting Yes or cancel it by selecting No :

10 Note that while WIN_SHOW defaults to TRUE for base frames, it defaults to FALSE for subframes. The
same holds for FRAME_SHOW_LABEL.

11 Note that the subframe won’t actually be displayed until control is returned to the Notifier.

2SUIN Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 41

Figure 47 Pop-up Confirmer

(Cist Directory) (Set Is flags) (Edit) (Delete)
Filing Mode: O Use "File:" item

Directory: /fusr/view/1.75/usr/src/usr.bin/sunwindows/suntool/examples

detoolw menugenproc.c
.customer dctool.c resize_demox
.doc err resize_demo.c
.old filer* seln_demo*
. filak

Are you sure you want to Quit?

image_browser_2% tty_io.c
image_browser_2.c¢ typein%
loopback* typein.c
loopback.c

menugenproc*

window_loop() The display of a non-blocking pop-up is controlled using the WIN_SHOW attri-
bute. The display of a blocking pop-up, on the other hand, is controlled with the
two functions window_loop() and window_return().

caddr_t
window_loop(subframe)
Frame subframe;

void
window_return(return_value)
caddr_t return_value;

window_loop () causes the pop-up to be displayed and receive all input
directed to the screen. The call will not return until window_return() is
called from one of the pop-up’s notify procedures. The value passed to
window_return() as return_value will be returned by

window_loop (). Its interpretation is up to the application. That is, it may be
used to indicate whether the command was confirmed, whether a valid file name
was entered, and so on.

2SU N Revision A, of March 27, 1990

microsystems

42 SunView Programmer’s Guide

Restrictions on Pop-Up Frames

Controlling a Pop-up or
Frame’s Shadowing

Note that the use of shadow frames
consumes an additional file descrip-
tor.

@

There are some restrictions on pop-up frames displayed using
window_loop():

0

]

[u}

=}

o

You can only have one subwindow in the pop-up frame.

The only subwindow types that work properly are canvases and panels.
Do not use scrollbars.

Do not set FRAME_ CLOSEDto TRUE.

Do not set WIN_SHOWto TRUE.

These limitations do not apply to non-blocking pop-ups displayed using
WIN_SHOW.

Sun’s convention is that only transient items such as pop-ups have shadows.
However, using the attribute FRAME _SHOW_SHADOW you may control the sha-
dowing effect of a frame or a subframe:

a}

If you want your base frame to have a shadow, then set the attribute
FRAME SHOW_SHADOW to TRUE.

You may stop a shadow from appearing with a subframe during create time
by setting FRAME_SHOW_SHADOW to FALSE.

S ll Il Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 43

4.6. Example 5—
image browser 1

Figure 4-8

Specifying Subwindow Size

N3

X

Figure 4-8 illustrates how to specify the size and position of subwindows in order
to get the layout that you want. This application lets the user view the images in
files generated by iconedit. The user first presses the List button to get a list-
ing. The user then selects a file that contains an image and press the Show but-
ton to view the image:

image browser 1

image_brouser
flame.icon
hello_world.icon

Dir:
File: *.icon
(List) [Show) (Quit)

sunview_manual.icon
orld.icon

coral® 1s -1 *.,icon

bill.icon

bulbh.icon
cloun.icon
flame.icon

This example presents a somewhat more complex subwindow layout: the tty
subwindow has been moved to the left, the control panel to the upper right, and a
panel for displaying the image added on the lower right.

You can specify the size of a subwindow either in pixels, with WIN_HEIGHT
and WIN_WIDTH or in terms of rows and columns, with WIN_ROWS and
WIN_COLUMNS.!2 If its dimensions are not specified, then a subwindow will
extend in the y direction to the bottom edge, and in the x direction to the right
edge of the frame. In this case the subwindow’s height and width will have the
special value WIN_EXTEND TO_EDGE,!3 and will track the edge of the frame
at run time, expanding or shrinking appropriately when the user resizes the
frame.

Keep in mind that if you alter the size of a frame so that it exactly borders on a
subwindow by calling window_fit (), the dimension of the subwindow that
touches the frame will automatically become WIN_EXTEND_TO_EDGE.

12 Row/column space is discussed in the next example.

13 It is meaningless to set the width or height of a frame to WIN_EXTEND_TO_EDGE, and it will interfere
with subwindow behavior.

sSsun Revision A, of March 27, 1990

microsystems

44 SunView Programmer’s Guide

Default Subwindow Layout

Explicit Subwindow Layout

The default subwindow layout algorithm is simple. The first subwindow is
placed at the upper left corner of the frame (leaving space for the frame's header
and a border). If the width of the previously-created subwindow is fixed, not
extend-to-edge, then the next subwindow is placed to the right of it. If the width
of the previously-created subwindow is extend-to-edge, then the next subwindow
is placed below it, at the left of the frame.

This default layout algorithm handles only very simple topologies. SunView
provides attributes that allow you to specify more complex layouts by explicitly
positioning subwindows. You can position one subwindow relative to another by
using WIN_BELOW and WIN_RIGHT_OF. These attributes take as their value
the handle of the subwindow you want the new subwindow to be below or to the
right of.

image browser_1, pictured on the preceding page, illustrates the use of
window_fit () along with explicit subwindow positioning to obtain a particu-
lar layout. The relevant calls are shown below:

. N
tty = window create(frame, TTY,
WIN_ROWS, 20,
WIN_COLUMNS, 30,
0);

control panel = window_create(frame, PANEL, 0);
(create panel items...)
window_fit(control_panel);

display_panel = window create(frame, PANEL,

WIN_BELOW, control_panel,
WIN_RIGHT OF, tty,
0);
window fit(frame);
1\ J

First the tty subwindow is created with a fixed height and width. Then the con-
trol panel is created, with no specification of origin or dimensions.

Since the width of the previous subwindow was fixed, the control panel is placed
by default just to the right. After its items are created, the control panel is shrunk
around its items in both dimensions with window_fit ().

Next, the display panel is created and explicitly positioned below the control
panel and to the right of the tty subwindow. Both dimensions of the display
panel default to WIN_EXTEND_TO_EDGE.

Finally, window_fit() is called to shrink the frame to the height of the tty
window and the combined width of the tty window and the control panel.}4

14 window_fit () causes the window to shrink until it encounters the first fixed border. Subwindows
which are extend-to-edge don’t stop the shrinking.

sun

microsystems

Revision A, of March 27, 1990

Chapter 4 — Using Windows 45

NOTE

Specifying Subwindow Sizes
and Positions

Changing Subwindow Layout
Dynamically

The Rect Structure

One thing to watch out for is that WIN_BELOW only affects the subwindow’s 'y
dimension, and WIN_RIGHT_OF only affects the x dimension.

You can also specify the origin of a subwindow in pixels using WIN X and
WIN_Y. The computations for these attributes take the borders and header of the
frame into account, so that specifying WIN_X and WIN_Y of O will then result in
the subwindow being placed correctly at the upper left corner of the frame.

The program resize_demo, listed in Appendix A, uses these attributes to lay out
its subwindows in a non-standard manner.

If you programmatically change the size or position of subwindows after you
create them, then you must explicitly re-specify the origin of any subwindows
that are below or to the right of the altered subwindows. This must be done even
if you specified the positions of these other subwindows using relative position
attributes, such as WIN_BELOW.

This step is necessary because subwindows are not automatically laid out again
when the positions and sizes of other subwindows are changed. They are only
laid out again if the frame changes size. When re-specifying the layout of the
other subwindows, you can use relative position attributes such as WIN_BELOW.

The attributes WIN_X, WIN_Y, WIN_WIDTH and WIN_HEIGHT, taken together,
define the rectangle occupied by a window. This rectangle is actually stored as a
Rect struct, which you can get or set using the attribute WIN_RECT. The
definition of a Rect, found in <sunwindow/rect.h>,is:!°

typedef struct rect {
short r_left;
short r_top;
short r_width;
short r_height;

} Rect;

The Rect is the basic data structure used in SunView window geometry. Where
complex shapes are required, they are built up out of groups of rectangles.!6

15 The result that a window returns is relative to a frame’s positioning space. It is not self-relative and it is
not parent-relative. Therefore, WIN_RECT should only be used for window positioning operations. Do not use
it for pw_lock().

16 For a detailed discussion of rectangle geometry, including useful macros for operating on rectangles, see
the chapter entitled Rects and Rectlists in the SunView System Programmer’s Guide.

sun Revision A, of March 27, 1990

microsvstems

46 SunView Programmer’s Guide

4.7. Example 6—

Row/Column Space

In the next example, when the user specifies a filename and pushes Browse the
image browser 2 images in the files are displayed in a scrollable panel:

Figure 49 image browser_ 2

image_brouwser_2

Dir: /usr/vieuw/doc/app/code

File: l".'it:or‘

SUNCORE
.,

cursor

— g —

demo

The point of this example is to illustrate how you can use row/column space to
specify the size of a subwindow. The goal was to make the panel just the right
size to display a single page of icons, with four rows, four columns, and 10 pixels

of white space around each icon.

Row/column space refers to a logical grid defining the rows and columns of a
window. You can define the row/column space for a window by using the attri-

butes in the following table:

Table 4-2 Window Row/Column Geometry Attributes

Attribute Description Default Def. in Panels
WIN_BOTTOM MARGIN Bottom margin. 0 (same)
WIN_COLUMN_GAP Space after columns. 0 (same)
WIN_COLUMN_WIDTH Width of a column. Width of WIN_FONT. (same)
WIN_LEFT_MARGIN Left margin. 5 4
WIN_RIGHT MARGIN Right margin. 5 0
WIN_ROW_GAP Space after rows. 0 5
WIN_ROW_HEIGHT Height of arow. Height of WIN_FONT (same)
WIN_TOP_MARGIN Top margin. 518 4

18 In frames with headers, the default for WIN_TOP_MARGIN depends on the system font. With the default

%»37 S ll n Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 47

Defining a Panel’s Row/Column

Space

Positioning Panel Items in
Row/Column Space

Using the row/column space attributes, the icon browsing panel pictured on the
preceding page is specified as follows:

e N
Scrollbar scrollbar = scrollbar_create(SCROLL_MARGIN,10,0);
bar_width = (int)scrollbar_get(scrollbar, SCROLL_THICKNESS, 0);
display_panel = window_create(base_frame, PANEL,
WIN_VERTICAL_ SCROLLBAR, scrollbar,
WIN_ROW_HEIGHT, 64,
WIN_COLUMN_WIDTH, 64,
WIN ROW GAP, 10,
WIN_ COLUMN_GAP, 10,
WIN LEFT_MARGIN, bar_width + 10,
WIN TOP_MARGIN, 10,
WIN_ROWS, 4,
WIN_COLUMNS, 4,
0);

window_set(display_panel, WIN_LEFT_MARGIN, 10, 0);

\. J

This achieves our goal of a panel the right size for a 4x4 array of 64 pixel square
icons, with 10 pixels of white space around each icon.

Once you have defined your row/column space, you can position panel items
within that space with the ATTR ROW() and ATTR_COL () macros.!® The code
fragment shown below shows how the items for the browsing panel are created
and positioned at the proper row and column each time the Browse button is
pushed:
4)
for (row = 0, image count = 0; image_count < files_count; rowt+)
for (col = 0; col < 4 && image count < files_count; col++) {
if (image = get_image(image_count)) {
panel_create_item(display_panel, PANEL_MESSAGE,
PANEL_ITEM Y, ATTR_ROW(row),
PANEL,_ITEM X, ATTR_COL(col),
PANEL_LABEL_IMAGE, image, 0);

image_count++;

}

This example is complicated somewhat by an inconsistency in the way margins
are handled in the current release of SunView. The left and top margins are used
in two ways: for determining the size of the panel, and for determining the loca-
tion of panel items positioned with ATTR_COL () and ATTR_ROW(). The size
computation does not take into account any scrollbar which may be present; the
positioning computation, on the other hand, does take the scrollbar into account.
That is why, in the call to window_create() above, WIN_LEFT_ MARGIN is
set to the width of the scrollbar plus 10 pixels, and then set immediately after-
ward to 10 pixels.

system font, it defaults to 17.
19 These “character unit macros” are described fully in Chapter 18, Atribute Utilities.

S ll ll Revision A, of March 27, 1990

microsvstems

48 SunView Programmer’s Guide

4.8. Attribute Ordering

Command-line Arguments

The general rule is that attributes in SunView are evaluated in the order they are
given. The following two examples of text subwindow calls illustrate how giv-
ing the same attributes in different orders can produce different effects:

window_set (textsw, TEXTSW_FILE, "file 1", 0);
window_set (textsw, TEXTSW_FIRST, 20, TEXTSW FILE, "file 2", 0);

window_set(textsw, TEXTSW_FILE, "file 1", 0);
window_set (textsw, TEXTSW_FILE, "file_2", TEXTSW_FIRST, 20, 0);

In the first pair of calls, the index is first set to the 20th character of file_1,
then file_ 2 is loaded, starting at character zero. The second pair of calls first
loads file_ 2, then sets the index in file_ 2 to 20.

The attribute FRAME_ARGS bears special mention. As described in the second

example in this chapter, simple_panel, this attribute causes the frame to process
the command-line arguments given by the user at run time. Some of these argu-
ments correspond to attributes that can be set programmatically; for example, -

Wh corresponds to WIN_ROWS.20

The basic rule, that attributes are evaluated in the order given, applies equally to
attributes that are explicitly specified in the program and to those that are
specified at run time using their command-line equivalents. If a given attribute is
specified more than once, then the last setting is the one that takes effect. You
can therefore control whether your application or the user has the last word by
specifying attributes after or before FRAME _ARGS.

Let’s take a couple of examples:

window_create(0, FRAME,
FRAME_ARGS, argc, argv,
FRAME LABEL, "LABEL FROM PROGRAM",
WIN_ROWS, 10,
0):

window_create(0, FRAME,
FRAME_LABEL, "LABEL FROM PROGRAM",

WIN_ROWS, 10,
FRAME ARGS, argc, argv,
0);

Assume that the program was invoked with a command line containing the fol-
lowing arguments:

-W1l "LABEL FROM COMMAND-LINE" -Wh 4

In the first call, by putting FRAME_ARGS at the start of the list, the application
overrides the command-line arguments, and guarantees that the frame header will
read “LABEL FROM PROGRAM?” and the height will be 10 lines.

20 For a complete list of these arguments see the Command Line Frame Arguments table in Chapter 19,
SunView Interface Summary.

S ll n Revision A, of March 27, 1990

microsystems

Chapter 4 — Using Windows 49

Different Classes of Attributes

The Panel Package

In the second call, since FRAME_ARGS appears at the end of the list, the
command-line arguments override what the application has specified, resulting in
a label of “LABEL FROM COMMAND-LINE” and a height of 4 lines.

Keep in mind that if you specify WIN_FONT, it does not override the font that
the user specified using -Wi.

In the case of different objects, the window attributes (those beginning with
WIN_) are processed after the others (FRAME_*, PANEL_ *, and so on).

Suppose that you want to create a canvas with a scrollbar. You also want the
logical canvas to expand when the user makes the window bigger, but never to
shrink past its initial size, even if the user shrinks the window. The initial size of
the canvas should be the size of the “inner” portion of the window — not includ-
ing the scrollbar.

The straightforward approach would be to simply set all relevant attributes when
the window is created, as in:

anvas = window_create(frame, CANVAS,
WIN_VERTICAL_SCROLLBAR, scrollbar_create(0),
CANVAS AUTO_SHRINK, FALSE,
0);

This call, however, results in a canvas which is too big, extending underneath the
vertical scrollbar. This is because of the order in which the CANVAS__ and WIN_
attributes are evaluated.

Since the window attributes are evaluated after the canvas attributes, the canvas
size is set according to the initial size of the window, which does not have a
scrollbar. By the time WIN_VERTICAL_SCROLLBAR is evaluated, the canvas
refuses to shrink to the smaller inner portion of the window, since
CANVAS_AUTO_SHRINK has already been evaluated and set to FALSE.

In general, you can force a particular order of evaluation by using separate
window_set () calls, asin:

anvas = window_create(frame, CANVAS,
WIN VERTICAL_SCROLLBAR, scrollbar_create(0),
0);

indow_set(canvas, CANVAS_ AUTO_SHRINK, FALSE, 0);

The panel package deviates from the norm in that its attributes are generally not
order-dependent. For example, you can specify the label of an item before the
font, and the font will be used even though it appears after the label.

The only thing to watch out for is that you can’t change the font in a single call,
as in:

% S lln Revision A, of March 27, 1990

50 SunView Programmer’s Guide

r N
panel set(text_item,
PANEL_FONT, font_1,
PANEL_LABEL_STRING, "Label:",
PANEL_FONT, font_2,
PANEL_VALUE, "initial value",
0);
\ J

The above call will cause both the label and the value for text_item to be ren-
dered in font_2.

4.9. File Descriptor Usage In SunView, each window is actually a device, /dev/winnnn, that is accessed
through a file descriptor. Other packages such as the selection service also use
file descriptors. In SunOS there is a limit to the number of file descriptors one
program can have open. In Release 4.0 the limit was 64, while in 4.1 it is 256 fds.
Thus it is possible for your application to run out of file descriptors.

The following table summarizes how file descriptors are used in SunView.

Table 4-3 SunView File Descriptor Usage

Window Type/

Package FD Usage How FDs are used
FRAME 1 1 for unshadowed frames.
FRAME 2 subframes with shadow.

1 for the subframe.
1 for the shadow.

CANVAS 1 1 for the window.
TEXTSW 3 1 for the window,

+ 1 for the file to be edited (if any),
+ 1 for scratch (the /tmp/Text... file),

) 2 temporarily created during a save.
PANEL 1 1 for the window.
TTYSW 2 1 for the window,
+ 1 for the pty (pseudo-tty).
MENU 0 Fullscreen access uses the window's FD.
ALERT 1 1 for positioning

Alerts have a frame and a panel;
however, the FDs are allocated for the
first alert and reused by subsequent alerts.

Pointer 0 Most pointers are managed by the kernel.
S .
%& S u ll Revision A, of March 27, 1990
microsystems

Chapter 4 — Using Windows 51

Table 4-3

Counting File Descriptors

File Descriptor Leakage

g

SunView File Descriptor Usage— Continued

Window Type/
Package FD Usage How FDs are used

Icon 0 Frame uses same FD whether open or iconic.

Scrollbar 0 (implemented as a region -- read the
SunView System Programmer’s Guide)

window manager (1) 1 temporarily used for window
management operations.

UNIX 3 stdin/stdout/stderr

framebuffer 1 frame buffer FD gets allocated
automatically with the base frame. The screen
device must be opened for your program
to draw on it.

Selection Service 3 selection service fd’s

are allocated whenever there is something
that will set or get from the selection
service. For example, if you put in
selection service code or the first time

a panel itemn is allocated.

This uses sockets to communicate:

1 for the connection to the service

+ 1 to receive UDP requests

+ 1 TCP rendezvous socket for transfers.
(1) 1 transiently opened when a transfer

is in progress to carry it.

It is often useful to know how many file descriptors are open. This can be
accomplished with the fstat(2) system call. The method is to loop over
each possible £fd, explicitly checking its status with fstat(2).

The question of the upper limit of the loop can be answered either by choosing a
suitable number such as 256, or more dynamically by using the getdta-
blesize(2) system call to determine the limit.

An example appears in the Kernel Interface chapter of the System Services Over-
view.

window_return does not destroy the windows in addition to exiting from
window_loop.

Some programmers may not realize that window_return exits from
window_loop, but does not destroy any windows. As aresult the file descrip-
tors associated with the windows remain in use and unavailable for other

sun Revision A, of March 27, 1990

microsystems

52 funView Programmer’s Guide

windows. To reclaim those file descriptors, be sure to call window_destroy.

X S ll n Revision A, of March 27, 1990

microsystems

Summary Listing and Tables

Canvases

The most basic type of subwindow provided by SunView is the Canvas. A can-
vas is essentially a window into which you can draw.

For a demonstration of the various canvas attributes, run the program
/usr/demo/canvas_demo. Forexamples of canvases that illustrate event
handling, run the image editor iconedit(l). iconedit uses two canvases,
the large drawing canvas on the left, and the small proof area on the lower right.

In order to use canvases you must include the header file
<suntool/canvas.h>.

To give you a feeling for what you can do with canvases, the following page lists
the available canvas attributes, functions and macros. Many of these are dis-
cussed in the rest of this chapter and elsewhere (use the Index to check). All are
briefly described with their arguments in the canvas summary tables in Chapter
19, SunView Interface Summary:

o the Canvas Attributes,

o the Canvas Functions and Macros.

sun 53 Revision A, of March 27, 1990

microsystems

54 SunView Programmer’s Guide
Canvas Attributes
CANVAS_AUTO_CLEAR CANVAS FIXED IMAGE CANVAS REPAINT_PROC
CANVAS_AUTO_EXPAND CANVAS HEIGHT CANVAS_RESIZE_PROC
CANVAS AUTO_SHRINK CANVAS_MARGIN CANVAS_RETAINED
CANVAS_FAST_MONO CANVAS_ PIXWIN CANVAS_WIDTH

Canvas Functions and Macros

canvas_event (canvas, event)
canvas_pixwin(canvas)

canvas_window_event(canvas, event)

sSun

microsystems

Revision A, of March 27, 1990

Chapter 5 — Canvases 55

5.1. Creating and Drawing
into a Canvas

Example 1:

Like all windows in SunView, canvas subwindows are created with
window_create(). When drawing into a canvas use the canvas pixwin,
which you can get with the canvas_pixwin () macro.

The pixwin is the structure through which you render images in a window. You
draw points, lines and text on a pixwin with a set of functions of the form
pw_*() —pw_write(), pw_vector(),pw_text() etc.2!

As a beginning example, the following program puts up a canvas containing a
box with the words “Hello World!™:

r N
/***************************'k****************************/
/* */
/* simple_ canvas.c */
/% */

/**/
/**/

/* */
/* This program displays a canvas with a box containing */
/* the statement "Hello World!". The user of this */
/* application has the ability to close, move, resize, */
/* hide, redisplay, or quit the window. */
/* */

/**********1(*************'k*************************t*'k***/

#include <suntool/sunview.h>
#include <suntool/canvas.h>
main(argc, argv)

int argc;

char **argv;

{

Frame frame;
Canvas canvas;
Pixwin *pwW;

/* create frame and canvas */

frame = window_create(NULL, FRAME, 0);

canvas = window_create(frame, CANVAS, 0);

/* get the canvas pixwin to draw into */

pw = canvas_pixwin(canvas);

/* draw top, bottom, left, right borders of box */
pw_vector(pw, 100, 100, 200, 100, PIX SRC, 1);
pw_vector(pw, 100, 200, 200, 200, PIX_SRC, 1);
pw_vector(pw, 100, 100, 100, 200, PIX_SRC, 1);
pw_vector(pw, 200, 100, 200, 200, PIX SRC, 1);

/* write text at (125,150) in default font */
pw_text(pw, 125, 150, PIX SRC, 0, "Hello World!");
window_main_loop(frame);

exit(0);

. J

The PIX_SRC argument to pw_vector () and pw_text () is a rasterop
function specifying the operation which is to produce the destination pixel

2! Pixwins and their associated functions are covered in detail in Chapter 7, Imaging Facilities: Pixwins.

7 S ll n Revision A, of March 27, 1990

microsystems

56 SunView Programmer’s Guide

values. There are several other rasterop functions besides PIX_SRC; they are
described in Chapter 2 of the Pixrect Reference Manual.

S ll ll Revision A, of March 27, 1990

microsystems

Chapter 5 — Canvases 57

5.2. Scrolling Canvases

Example 2:

NOTE

Many applications need to view and manipulate a large object through a smaller
viewing window. To facilitate this SunView provides scrollbars, which can be
attached to subwindows of type canvas, text or panel.

The code below creates a canvas that is scrollable in both directions:
4 \

frame = window_create(NULL, FRAME, 0);

canvas = window_create(frame, CANVAS,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS_WIDTH, 1000,
CANVAS_HEIGHT, 1000,
WIN_VERTICAL SCROLLBAR, scrollbar create(0),
WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(0),
0);

- J

The distinction between the dimensions of the canvas and of the window is
important. In the above example, we set the canvas width and height to 1000
pixels. Since the dimensions of the canvas subwindow (i.e. WIN_WIDTH and
WIN_HEIGHT) were not explicitly set, the subwindow extends to fill the frame.
The frame’s dimensions, in turn, were not explicitly set, so it defaults to 25 lines
by 80 characters in the default font. The result is a logical canvas roughly the
area of the screen, which is viewed through a window about one fourth that size.

It is necessary to explicitly disable the “auto-shrink” feature in the above exam-
ple. If this were not done, the canvas size would be truncated to the size of the
window. See Section 5.6, Automatic Sizing of the Canvas.

sun Revision A, of March 27, 1990

microsystems

58 SunView Programmer’s Guide

5.3. Canvas Model The components of a canvas subwindow and their relationships can be seen in
Figure 5-1.

Figure 5-1 Canvas Geometry

Scrollbars

WINDOW_HEIGHT

(CANVAS_WIDTH -
CANVAS WDTH CANVAS_HEIGHT -
The Canvas Think of the canvas itself as a logical surface on which you can draw. The width

and height of the canvas are set via the attributes CANVAS_WIDTH and
CANVAS_HEIGHT. So the coordinate system is as shown in Figure 5-1, with the
origin at the upper left corer and the point (CANVAS_WIDTH-1,
CANVAS_HEIGHT-1) at the lower right corner. Note that the logical canvas
origin is always at (0, 0).

The Canvas Pixwin As mentioned above, you draw on the canvas by writing into the canvas pixwin,
which is retrieved via the CANVAS_PIXWIN attribute or the
canvas_pixwin() macro.

The canvas pixwin is set up to take scrolling into account by performing the
transformation from your canvas coordinate system to its pixwin coordinate sys-
tem. So when you draw into the canvas pixwin using the pw_* functions you
don’t have to do any mapping yourself — the arguments you give should be in
the canvas coordinate system.

Between the frame border and the canvas pixwin is a margin, set via the attribute
CANVAS_MARGIN. This margin defaults to zero pixels, so in the simple case,
the canvas pixwin occupies the entire inner area of the window pixwin. If one or
more scrollbars are present, the canvas margin begins at the inside border of the
scrollbar.

Note the distinction between the pixwin of the canvas (attribute
CANVAS_PIXWIN) and the pixwin of the window (attribute WIN_PIXWIN).
The canvas pixwin is one of several regions of the window’s pixwin, which also
includes the regions occupied by the scrollbars and the margin.

%%0 S u n Revision A, of March 27, 1990

microsystems

Chapter 5 — Canvases 59

5.4. Repainting

Retained Canvases

Non-Retained Canvases

The Repaint Procedure

@

The canvas package manages the canvas pixwin for you. In particular, the clip-
ping list is restricted to the area of the canvas pixwin actually backed by the can-
vas. This means that you can never draw off the edge of the canvas. For exam-
ple, if you have set the canvas height to be less than the height of the canvas
pixwin, any pw_* operations that attempt to draw below the canvas height will
be clipped away.

By default, canvases are retained — i.e. the canvas package maintains a copy of
the bits on the screen in a backing pixrect, from which it automatically repaints
the screen image when necessary. If you wish to handle repainting yourself, you
can defeat this feature.

The canvas package allocates a backing pixrect the size of the logical canvas.
When the canvas width or height changes, a new backing pixrect of the proper
dimensions is allocated, the contents of the old pixrect are copied into the new
pixrect, and the old pixrect is freed.

For a non-retained canvas, set CANVAS_RETAINED to FALSE, and give your
own repaint function as the value of CANVAS_REPAINT_ PROC.

The repaint procedure is called whenever some part of the canvas has to be
repainted onto the canvas pixwin. Note that if you supply a repaint proc, it will
be called even if the canvas is retained — i.e. the canvas package will not
automatically copy from the backing pixrect to the canvas pixwin.

The form of the repaint procedure is:

sample_repaint_proc(canvas, pixwin, repaint area)
Canvas canvas;
Pixwin *pixwin;
Rectlist *repaint_area;

The first two arguments are the canvas and its pixwin (i.e. the value of
canvas_pixwin(canvas)). The third argument, repaint_area,isa
pointer to a list of rectangles (type Rectlist *) which define the area to be
painted.22

Before the canvas package calls your repaint procedure, it restricts the clipping
list to the area which needs to be painted. Thus if your application is not capable
of repainting arbitrary areas of the canvas you can repaint the entire image
without worrying about excessive repainting.

If you choose not to redraw each individual rect in the repaint area, you can use
the rectangle given by repaint_area->r1_ bound, which is the bounding
rectangle for the repaint area.

Note that if the attribute CANVAS_AUTO_CLEAR is TRUE, the canvas package
will clear the repaint area before calling your repaint procedure.

2 Rectlists are covered in detail in the chapter on Rects and Rectlists in the SunView System Programmer’s
Guide.

S u n Revision A, of March 27, 1990

microsystems

60 SunView Programmer’s Guide

Retained vs. Non-Retained

5.5. Tracking Changes in

the Canvas Size

Initializing a Canvas

NOTE

4

A retained canvas has two advantages. First, the repainting will be faster since it
is a simple block copy operation. Second, it eliminates the need for the applica-
tion to keep a display list from which to regenerate the image.

On the other hand there is a performance penalty on writing, since each operation
is performed both on the canvas pixwin and the backing pixrect. This penalty
may be reduced by using the pw_batch() call described in the chapter entitled
Imaging Facilities: Pixwins.

The client’s resize procedure is called whenever the canvas width or height
changes. Its form is:

sample_resize_proc(canvas, width, height)

Canvas canvas;
int width;
int height;

You should never repaint the image in the resize procedure, since if there is any
new area to be painted, the repaint procedure will be called later.

There are some subtle points to be aware of related to whether or not the image is
fixed size (CANVAS_FIXED_ IMAGE is TRUE). In the default case the image is
fixed size, and the repaint procedure will not be called when the canvas gets
smaller, since there will be no new canvas area to be repainted. If the image is
not fixed size, then whenever the canvas size changes, the canvas package
assumes that the entire canvas needs to be repainted, and the repaint area will
contain the entire canvas.

Neither the repaint procedure nor the resize procedure will be called until the
canvas subwindow has been displayed at least once. This allows you to create
and initialize a canvas without having to deal with the resize/repaint procedures.
The very first time the canvas is displayed, the resize procedure will be called
with the current canvas size. This initial call to the resize procedure allows you
to synchronize with the canvas size.

sun Revision A, of March 27, 1990

microsystems

Chapter 5 — Canvases

61

Example 3:

The canvas in the program below has a repaint procedure which fills the canvas
with an appropriately sized rectangle and diagonals.

r

/***/

/* */
/* canvas_repaint.c */
/* */

/***/
/***/

/* */
/* This program draws a rectangular image which includes */
/* two diagonally drawn intersecting lines. */
/* */

/***/

#include <suntool/sunview.h>
#include <suntool/canvas.h>
static void repaint_canvas();
main (argec, argv)
int argce;
char **argv;
{
Frame frame;
frame = window_create (NULL, FRAME, 0);
window_create (frame, CANVAS,
CANVAS_RETAINED, FALSE,
CANVAS_FIXED_IMAGE, FALSE,
CANVAS REPAINT PROC, repaint_canvas,
0);
window_main_loop (frame);
exit (0);
}
static void
repaint_canvas(canvas, pw, repaint_area)
Canvas canvas;
Pixwin *pw;
Rectlist *repaint_area;

int width = (int)window_get (canvas, CANVAS_ WIDTH);
int height = (int)window_get (canvas, CANVAS_ HEIGHT) ;
int margin = 10;

int xleft = margin;

int xright = width - margin;

int ytop = margin;

int ybottom = height - margin;
/* draw box */
pw_vector (pw, xleft, ytop, xright, ytop, PIX SRC, 1);

pw_vector (pw, xright, ytop, xright, ybottom, PIX_SRC, 1):

pw_vector (pw, xright, ybottom, xleft, ybottom, PIX SRC, 1);

pw_vector (pw, xleft, ybottom, xleft, ytop, PIX SRC, 1);
/* draw diagonals */

pw_vector (pw, xleft, ytop, xright, ybottom, PIX SRC, 1);
pw_vector (pw, xright, ytop, xleft, ybottom, PIX SRC, 1);

sun

microsystems

Revision A, of March 27, 1990

62 SunView Programmer’s Guide

5.6. Automatic Sizing of

the Canvas

NOTE

There are several points to note from the example on the previous page. First,
since the width and height of the canvas are not specified, they default to the
width and height of the window. Second, since the image being drawn is depen-
dent on the size of the canvas, we set CANVAS_FIXED_ IMAGE to FALSE.
Third, when the repaint proc is called, we don’t bother to draw the specified
repaint area, instead we rely on the clipping list to be restricted correctly and
simply redraw the entire image.

Two attributes requiring some explanation are CANVAS_AUTO_EXPAND and
CANVAS_AUTO_SHRINK. Setting both these attributes to TRUE allows you to
have a drawing area which automatically tracks the size of the window.

If CANVAS_AUTO_EXPAND is TRUE, the canvas width and height are never
allowed to be less than the edges of the canvas pixwin. For example, if you try to
set CANVAS_WIDTH to a value which is smaller than the width of the canvas
pixwin, the value will be automatically expanded (rounded up) to the width of
the canvas pixwin.

The main use of CANVAS_AUTO_EXPAND is to allow the canvas to grow bigger
as the user stretches the window. For example, if the canvas starts out exactly
the same size as the canvas pixwin, and the user stretches the window, the canvas
pixwin will get bigger, which will cause the canvas itself to expand.

Another point to keep in mind is that whenever you set
CANVAS_AUTO_EXPAND to TRUE, the canvas will be expanded to the edges of
the canvas pixwin (if it is smaller to begin with).

CANVAS_AUTO_SHRINK is symmetrical to CANVAS_AUTO_EXPAND. If
CANVAS_ AUTO_SHRINK is TRUE, the canvas width and height are never
allowed to be greater than the edges of the canvas pixwin.

As described in Section 4.8, Attribute Ordering, the canvas attributes are
evaluated before the generic window attributes. This means that, if you want to
set the window size and then disable automatic sizing of the canvas, you must
Jirst set the window size, then, in a separate window_set () call, disable
CANVAS_AUTO_SHRINK and/or CANVAS_AUTO_EXPAND. If you do both in
the same call, the auto-sizing will be turned off before the window size is set, so
the canvas size will not match the window size you specify. Here is an example
of how to do it correctly:
s ~\
canvas = window_create(frame, CANVAS,

WIN HEIGHT, 400,

WIN WIDTH, 600,
0);

window_set (canvas,
CANVAS_AUTO_SHRINK, FALSE,
CANVAS AUTO_EXPAND, FALSE,
0);

S u n Revision A, of March 27, 1990

microsystems

Chapter 5 — Canvases 63

5.7. Handling Input in
Canvases

Default Input Mask

NOTE

Writing Your Own Event
Procedure

Translating Events from
Canvas to Window Space

X

This section gives some hints on basic handling of input in canvases.?3

By default, canvases enable LOC_WINENTER, LOC_WINEXIT, LOC_MOVE and
the three mouse buttons, MS_LEFT, MS_MIDDLE and MS_RIGHT.24

Since the canvas pixwin is actually a region of the subwindow’s pixwin, your
event procedure will receive LOC_RGNENTER and LOC_RGNEXIT evenis
rather than 1L.OC_WINENTER and LOC_WINEXIT. The locator motion events
— LOC_MOVE, LOC_STILL, LOC_DRAG, and LOC_TRAJECTORY — will
only be passed to your event procedure if they fall within the canvas pixwin.

You can enable events other than those listed above with the window attributes
applying to events. So, for example, you could allow the user to type in text to a
canvas by calling:

[window_set{canvas, WIN_CONSUME KBD EVENT, WIN_ ASCII_ EVENTS, O)J

An application needing to track mouse motion with the button down would
enable LOC_DRAG by calling:

[window_set(canvas, WIN_CONSUME PICK_EVENT, LOC_DRAG, 0);]

If you supply an event procedure as the value of WIN_EVENT_PROC, it will get
called when any event is received for the canvas. Before your event procedure
gets called, however, the canvas package does some processing. If the event is
WIN_REPAINT or WIN_RESIZE, the canvas package calls your repaint or
resize procedures if necessary. If the event is SCROLL_REQUEST, then the can-
vas package performs the scroll.2> The repaint, resize and scroll events are then
passed to your event procedure. In the case of events which have x-y coordi-
nates, the canvas package translates the events from the coordinate space of the
canvas pixwin to that of the logical canvas.

Functions are provided to translate event coordinates from the coordinate space
of the canvas to the coordinate space of the canvas subwindow, and vice versa.

To go from canvas space to window space, use canvas_window_event ().
Keep in mind that the canvas_window_event function changes fields in its
event argument structure. For example, if you want to put up a menu in a canvas

2 The general input paradigm for Sunview is discussed in Chapter 6, Handling Input. See that chapter for a
full discussion of the available input events and how to use them.

24 Note that the canvas package expects to receive these events, and will not function properly if you disable
them. Also, if the user has the enabled the Lefi_Handed option in the Input category of defaultsedit(l),
the mouse buttons are reversed: MS_ LEFT refers to the right mouse button, MS_RIGHT to the left mouse
button.

25 If you want write a procedure which is called before the repaint, resize or scroll event is processed by the
canvas package, in order to modify the interpretation of the event, you must interpose on the event, as described
in Chapter 17, The Notifier .

sun Revision A, of March 27, 1990

micrnsustemea

64

Border Highlighting

Example 4:

subwindow, you need to specify the menu’s location in the coordinate of the
subwindow, not of the canvas.

To go from window space to canvas space, use canvas_event (). This
returns the Event * itis passed, with the x and y fields changed. The transla-
tion is necessary if you read your own events with window_read event (),
described in the next chapter, Handling Input.

The SunView convention is that a subwindow indicates that it is accepting key-
board events by highlighted its border. By default, canvas subwindows do not
enable any keyboard events, so the border is not highlighted. However, if you
explicitly enable keyboard events, by consuming WIN_ASCII EVENTS, the
canvas package will highlight the canvas border when it is given the input focus.

The program below prints out the corresponding string when the user types 0, 1,
or 2 into its canvas:

4 I
/***/
/* 'y
/* canvas_input.c */
/* */

/***/
/***/

/* */
/* This program draws a blank canvas *x/
/* ... and nothing more. */
/* */

/***/

#include <suntool/sunview.h>
#include <suntool/canvas.h>
static void my_event proc():;
main(argc, argv)
int arqgc;
char **argv;
{
Frame frame;
frame = window_create (NULL, FRAME, 0);
window_ create (frame, CANVAS,
WIN_CONSUME_KBD_ EVENT, WIN_ASCII_EVENTS,
WIN_EVENT_ PROC, my event proc,
0):
window_main loop (frame) ;
exit (0);
}
static void
my_ event_proc(canvas, event)
Canvas canvas;
Event *event;

char *string = NULL;
switch (event_action(event)) {
case '0':
\ J

sun

microsystems

Chapter 5 — Canvases 65

5.8. Color in Canvases

Setting the Colormap Segment

Color in Retained Canvases

Color in Scrollable Canvases

string
break;
case ’'l’:
string = "one ";
break;
case '2':
string
break;

"zero";

" two " ;

default:
break;
}
if (string != NULL)
pw_text(canvas_pixwin(canvas),
10, 10, PIX_SRC, NULL, string);

You can use color in canvases by specifying a colormap segment for the canvas
with the colormap manipulation routines described in Chapter 6, Handling Input.

The first thing to note is that since the canvas pixwin is a region of the
WIN_PIXWIN, you must also set the colormap segment for the canvas pixwin.

If the canvas is retained, then the colormap segment must be set before
CANVAS_RETAINED is set to TRUE. This is because the canvas package will
determine the depth of the backing pixrect based on depth of the colormap seg-
ment defined for the WIN_PIXWIN. (If the colormap segment depth is greater
than two, then the full depth of the display will be used. Otherwise, the backing
pixrect depth will be set to one.)

Since the depth of the backing pixrect is determined when the canvas is created,
you must create the canvas with CANVAS _RETAINED FALSE, then set the
colormap segment, then set CANVAS RETAINED to TRUE.

If the canvas has scrollbars, you need to attach the scrollbars to the canvas afier
the colormap segment has been changed. If the canvas has already been created
with scrollbars attached, you should change the colormap, then re-attach the
scrollbars. This will insure that the scrollbar pixwin regions use the new color-
map segment.

sun Revision A, of March 27, 1990

microsvstems

66 SunView Programmer’s Guide

Example 5: Below is an example of setting the colormap segment for a canvas:
r)
#include <suntool/sunview.h>
#include <suntool/canvas.h>
#include <sunwindow/cms_rainbow.h>

init_color_canvas(base_frame)
Frame base_frame;

{

{

Canvas canvas;

Pixwin *pw;

unsigned char red[CMS_RAINBOWSIZE];
unsigned char green[CMS_RAINBOWSIZE];
unsigned char blue[CMS_RAINBOWSIZE];

canvas = window_ create(base_frame, CANVAS,
CANVAS RETAINED, FALSE,
0);

cms_rainbowsetup(red, green, blue);

/* set the WIN_PIXWIN colormap */

pw = (Pixwin *) window_get(canvas, WIN_PIXWIN);
pw_setcmsname(pw, CMS RAINBOW) ;

pw_putcolormap(pw, 0, CMS_RAINBOWSIZE, red, green, blue);

/* set the CANVAS PIXWIN colormap */

pw = (Pixwin *) canvas_pixwin(canvas);

pw_setcmsname (pw, CMS_RAINBOW) ;

pw_putcolormap(pw, 0, CMS_RAINBOWSIZE, red, green, blue);

window_set(canvas,
CANVAS RETAINED, TRUE,
WIN_VERTICAL_SCROLLBAR, scrollbar_create(0),
WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(0),

0);
}
]
\. J
%}? S un Revision A, of March 27, 1990
microsystems

Material Covered

Header Files

Related Documentation

Summary Listing and Tables

Handling Input

This chapter explains how input is handled in SunView. Specifically it:
o gives an overview on how input is handled in SunView
o describes events and how they are used;

o gives various classes of events —ASCII, action events, function keys, locator
buttons, locator motion, window generated events, and so on;

o explains the input focus model distinguishing between pick and keyboard
focuses;

o shows how to control where input is distributed using input masks;
o shows how to query the state of an event;
o shows how to explicitly read events.

The material in this chapter applies to the window system as a whole. However,
it is of special interest to alerts or clients of canvases, who typically will want to
handle events themselves.

The definitions necessary to use SunView s input facilities are in the header file
<sunwindow/win_input.h>, which is included by
<sunwindow/window_hs.h>, which in tum is included by default when
you include <suntool/sunview. h>.

The chapter titled Workstations in the SunView System Programmer’s Guide
explains the input system at a lower level, covering such topics as how to add
user input devices to SunView.

To give you a feeling for what you can do with events, a list of the available
event descriptors and input related window events is given on the following page.
Many of these are discussed in the rest of this chapter and elsewhere (use the
Index to check). All are briefly described with their arguments in the input sum-
mary tables in Chapter 19, SunView Interface Summary:

o the Event Descriptors,

o the Input-Related Window Attributes.

%SUun 67 Revision A, of March 27, 1990

microsystems

68

SunView Programmer’s Guide

Input-Related Window Attributes

WIN_INPUT_DESIGNEE
WIN_GRAB_ALL_INPUT
WIN_KBD_FOCUS
WIN_KBD_INPUT MASK
WIN_PICK_INPUT_ MASK
WIN_CONSUME_KBD_EVENT
WIN_IGNORE_KBD_EVENT

WIN_CONSUME_KBD_EVENTS
WIN_IGNORE_KBD_EVENTS
WIN_CONSUME_PICK_EVENT
WIN_IGNORE_PICK_EVENT
WIN_CONSUME_PICK_EVENTS
WIN_IGNORE_PICK_EVENTS

Event Descriptors

WIN_NO_EVENTS
WIN_ASCII_EVENTS
WIN_IN_TRANSIT_EVENTS
WIN_LEFT_KEYS
WIN_MOUSE_BUTTONS

WIN_RIGHT_KEYS
WIN_TOP_KEYS
WIN_UP_ASCII_EVENTS
WIN_UP_EVENTS

sun

microsystems

Revision A, of March 27, 1990

Chapter 6 — Handling Input 69

6.1. An Overview of the
Input Environment

How are events generated ?

Figure 6-1

The input environment for SunView differs from UNIX programs. Most UNIX
programs read characters from standard input by using either the read(2) system
call or the standard I/O functions such as getc(3S), gets(3S), or scanf(3S).
SunView is different in that the underlying Notifier formats user input into uni-
form events, which it distributes to the window’s event procedure.

Figure 6-1 illustrates how events are generated and handled in SunView.

Input Events
Physical Physical
Input Input
Device Device
byte stream
, y
Kernel Kernel
Device Driver Device Driver
vuid firn event/ m
Window § Window 3§ Window 3
Driver 3 Driver [3 Driver K
8 s S
Kernel Process
Application Process
Notifier
y
Events
Translated
action event
translation
Notifier
Event
Procedure
/ '\
Event Event Event
Procedure Procedure Procedure
@ S ll n Revision A, of March 27, 1990
microsystems

70 SunView Programmer’s Guide

What does the Notifier do with
these events ?

How do windows determine
which input they will receive?

6.2. Events

An event Procedure

Events are generated from several sources. These include standard devices such
as the keyboard and mouse, special input devices such as graphics tablets, and
the window system itself.

SunView does not directly receive events from the hardware devices. Instead
each user action is interpreted by a “virtual” user input device (VUID) interface.
This interface packages the data it receives into an event and sends it to the appli-
cation process.25

The Notifier weaves events from all of these sources into a single, ordered event
stream. This event stream eliminates the need for the application to poll separate
streams from the different devices.

Because the underlying Notifier multiplexes the input stream between windows,
each individual window operates under the illusion that it has the user’s full
attention. That is, it sees precisely those input events that the user has directed to
it.

Each window indicates which events it is prepared to handle using input masks,
described in Section 6.6, Controlling Input in a Window. These masks only let
specified events through to the process.

As discussed in the previous section, each user action generates an input event.
This event is passed to your event procedure as an Event pointer (type
Event =), Three types of information are encoded as part of an event:

o anidentifying code, accessed with the macro event_action()

o the location of the event in the window’s coordinate system, accessed with
the macros event_x() and event_y ()

o atimestamp, accessed with the macro event_time()

Notice that the macro event _action() has replaced the old event _id().
For compatibility reasons, event id () is still supported, so that old code that
does not use the new action event codes will still work. See Section 6.4, Classes
of Events, for an explanation of action events. New programs that want to take
advantage of the new action events must use the event_action () macro.

Use the following form to specify an an event procedure in your applications:

void

sample_event proc(window, event, arg)
wWindow window;
Event *event;

caddr_t arg;

2% 1t is possible to bypass the VUID and receive unencoded events. Refer to the section on Unencoded Input
in Chapter 7 of the SunView System Programmer’s Guide.

% S ll n Revision A, of March 27, 1990

microsystems

Chapter 6 — Handling Input 71

How Subwindows Handle
Events

6.3. A List of Events

The arguments passed in are the window, the event, and an optional argument
containing data pertaining to the event. For example, if the event is a
SCROLL_REQUEST, arg will be the scrollbar that sent the event.

The canvas and panel subwindows pass events that they receive on to an event
procedure. These event procedures are supplied by the application as the value
of WIN_EVENT_PROC. If you set the WIN_EVENT_PROC of a canvas or panel
to a function you have written, you can receive events after they have been pro-
cessed by the canvas or panel. Both the canvas and panel packages process
SCROLL_REQUEST,WIN_RESIZELandWIN_REPAINTevmnsbeﬁwecﬂﬁng
your event procedure. The form of an event procedure is:

void

sample event proc(window, event, arg)
Window window;
Event *event;
caddr_t arg;

The default panel event procedure maps events to actions and determines which
panel item to send the event to. The default canvas event procedure does no
further processing of the event. You can call the default window event procedure
by calling window_default event proc() with the same arguments
passed to your event procedure.2’

Two tables are given on the following pages. Table 6-1, Event Codes, lists the
predefined event codes and their values.?8 The event id or code numbers that the
window system uses to represent an event are included in this table. These event
code numbers are in the range of 0-65535. The numbers are useful when debug-
ging a program because the debugger reports event codes as decimal integers and
not as names.

Table 6-2, Keyboard Motions and Accelerators, lists the event name and its asso-
ciated keyboard accelerator.

27 If you need to receive an event before it is processed by a canvas, panel, or any other type of window, you
can use the more general notifier interposition mechanism described in Chapter 17, The Notifier,

28 The same table also appears in the input summary section of Chapter 19, SunView Interface Summary.

S
"}\@ sun Revision A, of March 27, 1990

microsystems

72 SunView Programmer’s Guide

Table 6-1 Event Codes
Event Code Description Value (for debugging)

ASCII_FIRST Marks beginning of ASCII range 0
ASCII_LAST Marks end of ASCII range 127
META_FIRST Marks beginning of META range 128
META_LAST Marks end of META range 255
ACTION_ERASE_CHAR_BACKWARD Erase char to the left of caret 31745
ACTION ERASE_CHAR_FORWARD Erase char to the right of caret 31746
ACTION ERASE_WORD BACKWARD Erase word to the left of caret 31747
ACTION_ERASE WORD_FORWARD Erase word to the right of caret 31748
ACTION_ERASE _LINE BACKWARD Erase to the beginning of the line 31749
ACTION ERASE LINE_END Erase to the end of the line 31750
ACTION_GO_CHAR_BACKWARD Move the caret one character to the left 31752
ACTION_GO_CHAR_FORWARD Move the caret one character to the right 31753
ACTION GO_WORD_BACKWARD Move the caret one word to the left 31754
ACTION_GO_WORD_END Move the caret to the end of the word 31756
ACTION_GO_WORD_FORWARD Move the caret one word to the right 31755
ACTION_GO_LINE_BACKWARD Move the caret to the start of the line 31757
ACTION _GO_LINE_END Move the caret to the end of the line 31759
ACTION_GO_LINE_ FORWARD Move the caret to the start of the next line 31758
ACTION_GO_COLUMN_ BACKWARD Move the caret up one line, 31761

maintaining column position
ACTION_GO_COLUMN_ FORWARD Move the caret down one line, 31762

maintaining column position
ACTION_GO_DOCUMENT_START Move the caret to the beginning of the text 31763
ACTION_GO_DOCUMENT_ END Move the caret to the end of the text 31764
ACTION_STOP Stop the operation 31767
ACTION_AGAIN Repeat previous operation 31768
ACTION PROPS Show property sheet window 31769
ACTION_UNDO Undo previous operation 31770
ACTION_ FRONT Bring window to the front of the desktop 31772
ACTION_BACK Put the window at the back of the desktop 31773
ACTION_OPEN Open a window from its icon form or close 31775

if already open)
ACTION_CLOSE Close a window to an icon 31776
ACTION_COPY Copy the selection to the clipboard 31774
ACTION_PASTE Copy clipboard contents to the insertion point 31777
ACTION CUT Delete the selection, put on clipboard 31781
ACTION COPY THEN_PASTE Copies then pastes text 31784
ACTION_FIND_FORWARD Find the text selection to the right of the caret 31779
ACTION_FIND_BACKWARD Find the text selection to the left of the caret 31778
ACIION_FIND AND REPLACE Show find and replace window 31780
ACTION_SELECT_FIELD FORWARD Select the next delimited field 31783
ACTION_SELECT FIELD BACKWARD Select the previous delimited field 31782

4

sun

microsystems

Revision A, of March 27, 1990

Chapter 6 — Handling Input

73

Table 6-1 Event Codes— Continued
Event Code Description Value (for debugging)

ACTION_MATCH_DELIMITER Selects text up to a matching delimiter 31894
ACTION_QUOTE Causes next event in the input stream to 31898

pass untranslated by the keymapping system
ACTION_EMPTY Causes the subwindow to be emptied 31899
ACTION_STORE Stores the specified selection as a new file 31785
ACTION_ LOAD Loads the specified selection as a new file 31786
ACTION_GET FILENAME Gets the selected filename 31788
ACTION_SET_ DIRECTORY Sets the directory to the selection 31788
ACTION_INCLUDE_FILE Selects the current line (in pending-delete mode) 31891

and attempts to insert the file described by that selection
ACTION_CAPS_LOCK Toggle caps lock state 31895
PANEL_EVENT_ CANCEL The panel or panel item is no longer *‘current’’ 32000
PANEL_EVENT_MOVE_IN The panel or panel item was entered 32001

with no mouse buttons down
PANEL_EVENT_DRAG_IN The panel or panel item was entered with one or more 32002

mouse buttons down
SCROLL_REQUEST Scrolling has been requested 32256
SCROLL_ENTER Locator (mouse) has moved into the scrolibar 32257
SCROLL_EXIT Locator (mouse) has moved out of the scrollbar 32258
LOC_MOVE Locator (mouse) has moved 32512
LOC_STILL Locator (mouse) has been still for 1/5 second 32513
LOC_WINENTER Locator (mouse) has entered window 32514
LOC_WINEXIT Locator (mouse) has exited window 32515
LOC_DRAG Locator (mouse) has moved while a button was down 32516
LOC_RGNENTER Locator (mouse) has entered a region of the window 32519
LOC_RGNEXIT Locator (mouse) has exited a region of the window 32520
LOC_TRAJECTORY Inhibits the collapse of mouse motions; clients receive 32523

LOC_TRAJECTORY events for every locator motion

the window system detects.
WIN_ REPAINT Some portion of window requires repainting 32517
WIN_RESIZE Window has been resized 32518
WIN_STOP User has pressed the stop key 32522
KBD_REQUEST Window is about to become the focus of keyboard input 32526
KBD_USE Window is now the focus of keyboard input 32524
KBD_DONE Window is no longer the focus of keyboard input 32525
SHIFT LEFT Left shift key changed state 32530
SHIFT_ RIGHT Right shift key changed state 32531
SHIFT CTRL Control key changed state 32532
SHIFT_META Meta key changed state 32534
SHIFT_LOCK Shift lock key changed state 32529
SHIFT_ CAPSLOCK Caps lock key changed state 32528

sun

microsystems

Revision A, of March 27, 1990

74 SunView Programmer’s Guide

Table 6-1 Event Codes— Continued

Event Code Description Value (for debugging)
BUT (i) Locator (mouse) buttons 1-10 BUT(1) is 32544
MS_LEFT Left mouse button 32544
MS MIDDLE Middle mouse button 32545
MS RIGHT Right mouse button 32546
KEY _LEFT(i) Left function keys 1-15 KEY LEFT(1) is 32554
KEY RIGHT (1) Right function keys 1-15 KEY RIGHT (1) is 32570
KEY_TOP(1i) Top function keys 1-15 KEY_TOP (1) is 32586

S ll Il Revision A, of March 27, 1990

microsystems

Chapter 6 — Handling Input 75

Table 6-2 Keyboard Motions and Accelerators

Command Token SunView 4.0 SunView 3.x
ACTION ERASE_CHAR_BACKWARD
ACTION ERASE_CHAR FORWARD
ACTION ERASE_WORD_ BACKWARD
ACTION ERASE_WORD_FORWARD
ACTION ERASE_LINE_BACKWARD
ACTION ERASE_LINE_END

ACTION_GO_CHAR_BACKWARD

ACTION_GO_CHAR_FORWARD

ACTION_GO_WORD_BACKWARD

ACTION GO_WORD_END
ACTION_GO_WORD_FORWARD

ACTION GO _LINE FORWARD
ACTION GO _LINE BACKWARD
ACTION GO _LINE_END

ACTION GO COLUMN_ BACKWARD

ACTION_GO_COLUMN_FORWARD

ACTION_GO_DOCUMENT_START
ACTION GO_DOCUMENT END
ACTION_STOP
ACTION_AGAIN
ACTION_PROPS

ACTION_UNDO

ACTION_FRONT

ACTION BACK

ACTION_OPEN

ACTION CLOSE

ACTION_ COPY

ACTION_ PASTE

ACTION_CUT

ACTION_COPY_ THEN_PASTE
ACTION_FIND_FORWARD
ACTION_FIND_BACKWARD
ACTION_FIND_AND REPLACE
ACTION_SELECT_FIELD_ FORWARD
ACTION_SELECT_FIELD BACKWARD
ACTION MATCH_ DELIMITER
ACTION_QUOTE
ACTION_EMPTY (Document)
ACTION_STORE

(Control-B) or (Shift-Control-F] or

Control-F) or (Shift-Control-B) or
R12

or
Shift-Control-period j or
hift-Control-slash

Control-period

Control-slash | or

Shift-Control-comma
Control-semicolon) or (R11)
{Controt-A) or (Shift-Control-E)
Control-E) or (Shift-Control-A)

Control-P) or (Shift-Control-N) or
R10

Control-N) or [Shift-Control-P } or
R12

Shift-Control-Return] or
or
L
L2)or
13
L4) or (Meta-U
LS
Shift-L5
L7
Shift-L7
or
or (Meta-V
L10) or (Meta-X
Meta-P
or
Shift-L9) or (Shift-Meta-F
Control-L.9
Control-Tab
Shift-Control-Tab
ta-D

i

{

—

—

Y

i

Meta-E

eta-S

i

Control-Return

o
—

NEZ N NE R NE -
Emth
U
—

L

)gE
5
S

6
or
L10) or
Control-P
or
(Shift-L.9 Jor (Shift-Control-F }

UI

%% sSun

microsystems

Revision A, of March 27, 1990

76 SunView Programmer’s Guide

Table 6-2 Keyboard Motions and Accelerators— Continued
Command Token SunView 4.0 SunView 3.x
ACTION_LOAD
ACTION_INCLUDE FILE Meta-1
ACTION HELP? Meta-?) ((Meta-Shift-/)
ACTION GET FILENAME (Escape)
ACTION CAPS_LOCK

6.4. Classes of Events

ASCII Events

Locator Button Events

Locator Motion Events

&

This section groups each of the events described in Table 6-1, Event Codes, into
logical classes. Each class is described below.

The event codes in the range 0 to 255 inclusive are assigned to the ASCII event
class. This includes the standard 7-bit ASCII codes and their 8-bit META coun-
terparts.

If a user strikes a key which has an obvious ASCII meaning; that is, a key in the
main typing array labeled with a single letter, it causes the VUID to enqueue for
the appropriate window an event whose code is the corresponding 7-bit ASCII
character.

The META event code values (128 through 255) are generated when the user
strikes a key that would generate a 7-bit ASCII code while the META key is also
depressed.

The standard Sun locator is a three button mouse, whose buttons generate the
event codes MS_LEFT, MS_MIDDLE and MS_RIGHT.

In general, a physical locator can have up to 10 buttons connected to it. In some
cases, the locator itself may not have any buttons on it; however, it may have
buttons from another device assigned to it. A light pen is an example of such a
locator.

Each button that is associated with the VUID's locator is assigned an event code;
the i-th button is assigned the code BUT (1i). Thus the event codes MS_LEFT,
MS MIDDLE and MS_RIGHT correspond to BUT (1), BUT(2) and BUT(3).

The physical locator constantly provides an (x, y) coordinate position in pixels;
this position is transformed by SunView to the coordinate system of the window
receiving an event. Locator motion event codes include LOC_MOVE,
LOC_DRAG, LOC_TRAJECTORY, and LOC_STILL.

Since the locator tracking mechanism reports the current position at a set sam-
pling rate, 40 times per second, fast motions will yield non-adjacent locations in
consecutive events.

2 If your keyboard has the key, you may also use it.

S ll n Revision A, of March 27, 1990

microsystems

Chapter 6 — Handling Input 77

Window Events

Resize & Repaint Events

NOTE

NOTE

¢

A LOC_MOVE event is reported when the locator moves, regardless of the state
of the locator buttons. If you only want to know about locator motion when a
button is down, then enable LOC_DRAG instead of LOC_MOVE. This will
greatly reduce the number of motion events that your application has to process.

When you enable LOC_MOVE or LOC_DRAG, the window system gives you the
current locator position by collapsing consecutive locator motion events into one.
This operation is appropriate for applications such as dragging an image from
one point to another, in which it is important to keep up with the mouse cursor.

For some applications, however, each point on the cursor trajectory is of interest;
for example, a program that lets the user draw. In these situations you may not
want to collapse consecutive motion events. In such a situation you should ask
for LOC_TRAJECTORY events, which suppresses any event collapsing so that
you get all the locator movements that the window system sees.

Note that when you ask for LOC_TRAJECTORY events, you get (many!)
LOC_TRAJECTORY events in place of LOC_MOVE'’s, but you still get
LOC_DRAG events if you have enabled them.

If you ask for LOC_STILL, a single LOC_STILL event will be reported after
the locator has been still for 1/5 of a second.

Window events are generated by the window system itself. They are meaningful
only to the window to which they are directed.

To be informed when the locator enters or exits a window, enable events with the
codes LOC_WINENTER and LOC_WINEXIT.

If you are using the tile mechanism described in the SunView System
Programmer’s Guide, then you will be told when the locator has entered or
exited a tile using the LOC_RGNENTER and LOC_RGNEXIT events. To receive
these events you must also have LOC_MOVE enabled.

When the size of a window is changed (either by the user or programmatically) a
WIN_RESIZE event is generated to give the client a chance to adjust any
relevant internal state to the new window size. You should not repaint the screen
on receiving a resize event. You will receive a separate WIN_REPAINT event
when a portion of the window needs to be repainted.

Ifyou are using a canvas subwindow you will not need to track resize and
repaint events directly. The canvas package receives these events, computes the
new window dimensions or the precise area requiring repainting, and calls your
resize or repaint procedures directly. See Chapter 5, Canvases for more details.

S ll n Revision A, of March 27, 1990

microsystems

78 SunView Programmer’s Guide

Keyboard Focus Events

Stop Event

Function Key Events

@
4

Three events let your application interact with the keyboard focus mechanism
(the keyboard focus is explained in section 6.6, Controlling Input in a Window).
When the user explicitly directs the keyboard focus towards your window, you
will receive a KBD_REQUEST event. Your window will then become the key-
board focus unless you call window_refuse_kbd_focus(). Refusing the
keyboard focus, when you don’t need it, contributes to the usefulness of the split
keyboard/pick focus mode available as a runtime option to sunview(1).

The events KBD_USE and KBD_DONE parallel the locator events
LOC_WINENTER and LOC_WINEXIT, respectively. KBD_USE indicates that
your window now has the keyboard focus and KBD_DONE indicates that your
window no longer has it.

If the user presses and releases the key, an event with the code
WIN_STOP will be sent to the window under the cursor.3? In addition, a
SIGURG signal is sent to the window’s process. Your application can use the
key by clearing a stop flag and setting a STGURG interrupt handler3!
before entering a section of code that might, from the user’s perspective, take a
long time. If your SIGURG handler is called, set the stop flag and return. In the
code that is taking a long time, query the stop flag whenever convenient. When
you notice that the stop flag has been set, read the event, then gracefully ter-
minate your long operation.

The function keys in the VUID define an idealized standard layout that groups
keys by location: 15 left, 15 right, 15 top and 2 bottom.32

The event codes associated with the function keys are KEY LEFT (i),
KEY RIGHT (i) and KEY_ TOP (i), where i ranges from 1 to 15.

If you specifically ask for a function key event code, then that event code will be
passed to your event procedure.

If you don’t specifically ask for a given function key event code, then when the
user presses that function key you will get an escape sequence instead of the
function key event code (assuming ASCII events have been enabled). For physi-
cal keystations that are mapped to cursor control keys, events with codes that
correspond to the ANSI X3.64 7-bit ASCII encoding for the cursor control func-
tion are transmitted. For physical keystations mapped to other function keys,
events with codes that correspond to an ANSI X3.64 user-definable escape
sequence are transmitted.

30 WIN_STOP only works when enabled in the PICK event mask and not in the KBD event mask.
31 See notify set_signal_func() in in Chapter 17, The Notifier

32 The actual position of the function keys on a given physical keyboard may differ — see kbd(5) for details
on various keyboards.

S ll n Revision A, of March 27, 1990

microsystems

Chapter 6 — Handling Input 79

Shift Key Events

Semantic Events

Other Events

g

Applications can notice when a shift key changes state by enabling events with
the following codes: SHIFT LEFT, SHIFT RIGHT, SHIFT_CTRL,

SHIFT META, SHIFT LOCK and SHIFT CAPSLOCK. Although these codes
allow you to treat one or more shift key as function-invoking keys, this is not
recommended. Instead of watching for the event directly, you should query the
state of the shift keys via the macros described on the next page.

Release 4.0 of the SunOS introduces a new type of event. These events are
called action events and represent some old and many new functions in the win-
dow system. They are similar to the old events in that they are mapped to
specific keys on the keyboard. That is, certain combinations of keystrokes in
SunView correspond to high-level action events. For example, pressing the

key copies the current selection to the Clipboard in text subwindows,
panels and tty subwindows.

Action events differ from the old events in that applications can directly express
interest in the high-level action, “Copy the selection to the Clipboard” rather than
in the low-level, “The L6 key was pushed”. These events appear in Table 6-1
with the prefix ACTION_. Applications should use action events, because left-
handed users can assign to a different key, and in the future users will be
allowed to tie high-level events to arbitrary key combinations.

Your application may receive events which don’t fall into any of the classes
described above. For example, a non-standard input device, such as a second
mouse, may emit its own types of events. Also, a software object may communi-
cate with other software objects via events, as is the case when a scrollbar sends a
SCROLL_REQUEST to a panel or a canvas.

In general, your event procedure should not treat such unexpected events as
errors. They can simply be ignored.

S ll Il Revision A, of March 27, 1990

microsystems

80 SunView Programmer’s Guide

6.5. Event Descriptors Events have been further grouped into descriptors. Descriptors describe classes
of events such as all ASCII events, all mouse buttons, all top function keys, and
soon. You will use these descriptors to set input masks, described in Section 6.7
Enabling and Disabling Events

The descriptors are summarized in the following table.

Table 6-3 Event Descriptors

Event Descriptor Explanation

WIN_NO_EVENTS Clears input mask — no events will be accepted. Note: the
effect is the same whether used with a consume or an
ignore attribute. A new window has a cleared input mask.

WIN_ASCII_EVENTS All ASCII events. ASCII events that occur while the META
key is depressed are reported with codes in the META range.
In addition, cursor control keys and function keys are
reported as ANSI escape sequences: a sequence of events
whose codes are ASCII characters, beginning with <ESC>.

WIN_IN TRANSIT_EVENTS Enablesimmediate LOC_MOVE, LOC_WINENTER, and
LOC_WINEXIT events. Pick mask only. Off by default.

WIN_LEFT KEYS The left function keys, KEY_LEFT(1) — KEY_LEFT(15).

WIN_MOUSE BUTTONS All of MS_RIGHT,MS_MIDDLE and MS_LEFT.
Also sets or resets WIN_UP_EVENTS.

WIN_RIGHT KEYS The right function keys, KEY_RIGHT(1) — KEY_RIGHT(15).
WIN TOP_KEYS The top function keys, KEY_TOP(1) — KEY_TOP(15).
WIN_UP_ASCII_EVENTS Causes the matching up transitions to normal

ASCII events to be reported — if you see an 'a’

go down, you’ll eventually see the matching ’a’ up.

WIN UP_EVENTS Causes up transitions to be reported for button
and function key events being consumed.

6.6. Controlling Input in a Input may be controlled using input focus and input mask. The input focus is the
Window window that is currently receiving input. The input mask specifies which events
a window will receive and which events a window will ignore. This section
introduces these concepts and gives the algorithm used by the window system to
decide which window will receive a given input.

@g@ S ll n Revision A, of March 27, 1990

microsystems

Chapter 6 — Handling Input 81

Input Focus

Input Mask

SunView supports two types of focus models, a single focus model and a split
focus model.

The single focus model specifies that all input, no matter which input device it
came from, goes to the same window. The split input focus lets the user control
the pick input focus and the keyboard input focus separately.

The word pick comes from the general graphics term pick device, which is a user
input device that allows you to move a cursor on the screen and then click a but-
ton to choose a point on the screen. The most common pick devices are the
mouse, light pen and graphics tablet.

Under the split input focus model, mouse clicks and keystrokes may be distri-
buted to different windows. This makes some operations easier for the user. For
example, the user can select text in one window and move it to another window
without having to position the cursor over the destination window.

In general, the user controls the keyboard focus by using specific button clicks
and controls the pick focus by moving the mouse. Sometimes, it is appropriate
for input focuses to be under program control. Generally you should only change
an input focus based on some explicit and predictable user action.

You can indicate that you want a window to become the keyboard focus by set-
ting the WIN_KEYBOARD_FOCUS attribute to TRUE. Note that this is only a
hint to the window system. If the keyboard focus is tied to the pick focus, then
this call has no effect. The target window might also refuse the keyboard focus
request generated by this call (see KBD_REQUEST under Window Events above).
You can set the pick focus via the WIN_MOUSE_XY attribute, which sets the
mouse cursor to a particular position within a window.

For example, the call

[window_set(win, WIN_MOUSE_XY, 200, 300, 0); J

sets the cursor to the window-relative position (200, 300) and sets the pick focus
towin.

An input mask specifies which events a window will receive and which events it
will ignore. In other words, an input mask serves as a read enable mask. Each
window has both a pick input mask, to specify which pick related events it wants,
and a keyboard input mask, to specify which keyboard related events it wants.

When a window is the pick focus, its pick mask is used to screen events. When a
window is the keyboard focus, its keyboard mask is used to screen events.

This section describes how to specify which events a window will receive and
which it will ignore.

S ll Il Revision A, of March 27, 1990

microsystems

82 SunView Programmer’s Guide

Determining which Window
will Receive Input

The Notifier determines which window will receive a given event according to
the following algorithm:

o First, the keyboard input mask for the window which is the keyboard focus
is checked to see if it wants the event. If so, then it becomes the recipient;
otherwise the next test is applied.

o Second, the pick input mask for the window which is under the cursor is
checked to see if it wants the event. If several windows are layered under
the cursor, then the event is tested against the pick input mask of the topmost
window. If the mask wants the event, then it becomes the recipient; other-
wise the next test is applied.

o If the event does not match the pick input mask of the window under the cur-
sor, then the event will be offered to that window’s designee. By default the
designee is the window’s owner. You can set the designee explicitly by cal-
ling window_set () with the WIN_INPUT DESIGNEE attribute.33

o If an event is offered unsuccessfully to the root window, it is discarded.
Windows which are not in the chain of designated recipients never have a
chance to accept the event.

o Occasionally you may want to specify that a given window is to receive all
events, regardless of their location on the screen. You can do this by setting
the WIN_GRAB_ALL_INPUT attribute for the window to TRUE.

o If arecipient is found, then the locator coordinates are adjusted to the coor-
dinate system of the recipient, and the event is appended to the recipient’s
input stream. Thus, every window sees a single ordered stream of time-
stamped input events, which contain only the events that a window has
declared to be of interest.

33 Note that you must give the WIN_DEVICE_NUMBER of the window you wish to be the designee, not its
handle. This is to allow specifying windows in another user process as the input designee. So the following call
would set win2 to be the designee forwinl: window set(winl, WIN_ INPUT DESIGNEE,
window_get(win2, WIN _DEVICE NUMBER));

sun Revision A, of March 27, 1990

microsystems

Chapter 6 — Handling Input 83

6.7. Enabling and
Disabling Events

Which Mask to Use

Examples

You specify which events a window will receive and which it will ignore by set-
ting the window’s input masks via the following set of attributes:

Attributes Used to Set Window Input Masks

Events Taking a Events Taking a Null
Single Code Terminated List
WIN_CONSUME_KBD EVENT WIN CONSUME KBD EVENTS
WIN_IGNORE_KBD_ EVENT WIN IGNORE KBD EVENTS
WIN_CONSUME_PICK EVENT WIN CONSUME_PICK_EVENTS
WIN_IGNORE_PICK EVENT WIN _IGNORE_PICK EVENTS

The above attributes take as values either event codes such as LOC_MOVE,
MS_ LEFT, KEY LEFT(2),and so on, or event descriptors. The attributes in
the left column, ending in “_EVENT”, take a single code or descriptor, while
those on the right, ending in “_EVENTS”, take a null terminated list.

To enable or disable ASCII events, use the keyboard mask. To enable or disable
locator motion and button events, use the pick mask.

Function keys are typically associated with the keyboard mask, but sometimes it
makes sense to include some function keys in the pick mask — in effect extend-
ing the number of buttons associated with the pick device. For example, in the
SunView interface the (Again), (Undo], (Copy), (Paste), (Cut), and (Find) func-
tion keys are associated with the keyboard mask, while the (Stop), (Front), and,
keys are associated with the pick mask.

The event attributes cause precisely the events you specify to be enabled or dis-
abled — the input mask is not automatically cleared to an initial state. To be
sure that an input mask will let through the events you specify, first clear the
mask with the special WIN_NO_EVENTS descriptor. Take, for example, the fol-
lowing two calls:

window_set(win, WIN_CONSUME_PICK_EVENTS,
WIN_MOUSE_BUTTONS, LOC_DRAG, O,
0);

window_set(win, WIN_CONSUME PICK_EVENTS,
WIN_NO_EVENTS, WIN_MOUSE BUTTONS, LOC_DRAG, O,
0):

The first call adds the mouse buttons and LOC_DRAG to the existing pick input
mask, while the second call sets the mask to let only the mouse buttons and
LOC_DRAG through.

S ll Il Revision A, of March 27, 1990

microsystems

84

SunView Programmer’s Guide

4

Canvases by default enable LOC_WINENTER, LOC_WINEXIT, LOC_MOVE,
and the three mouse buttons, MS_LEFT, MS_MIDDLE, and MS_RIGHT.34 You
could allow the user to type in text to a canvas by calling:

[window_set (canvas, WIN_CONSUME_KBD EVENT, WIN_ASCII_EVENTS, 0)3

Sometime later you could disable type-in by calling:

[window_set(canvas, WIN_IGNORE_KBD_EVENT, WIN ASCII_EVENTS, 0) ;]

An application needing to track mouse motion with the button down would
enable LOC_DRAG by calling:

[window_set(canvas, WIN_CONSUME_PICK_EVENT, LOC_DRAG, Oq

You can enable or disable the left, right or top function keys as a group via the
event descriptors WIN_LEFT_ KEYS, WIN_RIGHT_ KEYS, or
WIN_TOP_KEYS. Note that if you want to see the up event you must also ask
for WIN_UP_EVENTS, as in:

window_set(win, WIN CONSUME_KBD EVENTS, WIN_LEFT_KEYS,
WIN_UP_EVENTS, 0);

In order to improve interactive performance, in the default case, windows do not
receive locator motion events (LOC_WINENTER, LOC_WINEXIT, and
LOC_MOVE) until after a LOC_STILL has been generated. If each window
responds to all of the events that are generated each time the mouse passes over
the window, then the response time of the system will be slowed down. Each
window will “wake up” when the mouse passes over it on the way to somewhere
else on the screen.

If you want a window to receive all events, even if the mouse is just passing over
the window without stopping, enable WIN_IN_ TRANSIT_EVENTS, with a call
such as:

window_set(canvas, WIN_CONSUME PICK_EVENTS,
WIN IN_TRANSIT EVENTS, 0);

34 Note that the canvas package expects to receive these events, and will not function properly if you disable
them.

S ll n Revision A, of March 27, 1990

microsystems

Chapter 6 — Handling Input 85

Setting the Input Mask as a
Whole

Querying the Input Mask
State

The attributes WIN_KBD INPUT_MASK and WIN_PICK_INPUT_ MASK allow
you to get or set an entire input mask. Let’s take the example of a subroutine that
provides interactive feedback. You can save the input mask on entry to the sub-
routine, set up the mask as appropriate, and restore the original mask before
returning as follows:

(3
do_feedback()
{

Inputmask *saved_mask;

saved_mask = (Inputmask *)
window_get(win, WIN_KBD_INPUT_MASK);

window_set(win, WIN_KBD_ INPUT_MASK, saved mask, 0);

Keep in mind that the inputmask pointer returned by window_get () points to
a static structure which is shared by all windows in the application. Getting
either the keyboard or pick input masks for another window will cause the static
structure to be overwritten.

You can use window_get () with WIN_CONSUME_PICK_EVENT and
WIN_CONSUME_KBD_EVENT to query the state of the input masks. For exam-
ple, the following call will find out whether or not a canvas is accepting
LOC_DRAGS:

[flag = (int)window_get(canvas, WIN_CONSUME PICK_EVENT, LOCﬁDRAG)}

S u Il Revision A, of March 27, 1990

microsystems

86 SunView Programmer’s Guide

6.8. Querying and Setting
the Event State

You can query the state associated with an event using the following macros, all
of which take as their only argument a pointer to an Event.

Table 6-5 Macros to Get the Event State

Macro

Returns

event_action()

event is_up()

event_is_down()

event x()

event_y()

event_shiftmask()

event_time()

event_shift is_down()
event_ctrl_is_down{()
event _meta_is_down()
event is_button()
event_is_ascii()
event_is_meta()
event_is_key_left()
event_is_key_right()

event is_key top()

The identifying code of the event. The codes are dis-
cussed in the previous section.3’

TRUE if the event is a button or key

event and the state is up.

TRUE if the event is a button or key

event and the state is down.

The x coordinate of the locator in the window’s
coordinate system at the time the event occurred.
The y coordinate of the locator in the window’s
coordinate system at the time the event occurred.
The value of predefined shift-keys

(described in kbd(5)). Possible values:

#define CAPSMASK 0x0001
#define SHIFTMASK 0x000E
#define CTRLMASK 0x0030

#define META SHIFT MASK 0x0040

The event’s timestamp, formatted as a timeval
struct, as defined in <sys/time.h>.

TRUE if one of the shift keys are down.

TRUE if the control key is down.

TRUE if the meta key is down.

TRUE if the event is a mouse button.

TRUE if the event is in the ASCII range (O thru 127).
TRUE if the event is in the META range (128 thru 255).
TRUE if the event is any KEY LEFT(1i).

TRUE if the event is any KEY RIGHT(1i).

TRUE if the event is any KEY TOP (i).

In addition to the above macros, which tell about the state of a particular event,
you can query the state of any button or key via the WIN_EVENT _STATE attri-
bute. For example, to find out whether or not the first right function key is down

you would call:

k1l down = (int)

window_get(canvas, WIN_EVENT_STATE, KEY RIGHT(1));

The call will return non-zero if the key is down, and zero if the key is up.

The following macros are provided to let you set some of the states associated

with an event.

35 event_id() isreplaced by event_action () However, for compatibility, event _id () will still

be supported.

sun

microsystems

Revision A, of March 27, 1990

Chapter 6 — Handling Input 87

Table 6-6

6.9. Releasing the Event
Lock

6.10. Reading Events
Explicitly

%“@

Macros to Set the Event State

Macro Effect
event_set_action(event, code) set event’sid to code.
event_set shiftmask
(event, shiftmask) set event’s shiftmask to shiftmask.

Possible values:
#define CAPSMASK 0x0001
#define SHIFTMASK 0x000E
#define CTRLMASK 0x0030
#define META_SHIFT MASK 0x0040

event_set x(event, Xx) set event’s x coordinate to x.

event_set y(event, y) set event'’s y coordinate to y.

event set time(event, time) set event’s timestamp to time.

event_set up(event) set state of a button event to up.

event _set down(event) set state of a button event to down.

If an operation generated by an input event is going to take over 5 seconds, then
call this routine to allow other processes to get input: 36

void
window_release_event_ lock(window)
Window window;

There are times when it is appropriate to go get the next event yourself, rather
than waiting for it to come through the normal event stream from the Notifier. In
particular, when tracking the mouse with an image which requires significant
computation, it may be desirable to read events until a particular action, such as a
mouse button up, is detected. To read the next input event for a window, bypass-
ing the Notifier, use the function:
int
window_read event(window, event)
Window window;
Event *event;

window_read_event () fills in the event structure, and returns 0 if all went
well. In case of error, it sets the global variable errno and returns —1.

window_read_event () canbe used in either a blocking or non-blocking
mode, depending on how the window has been set up.3’

36 For more details see the section on synchronization in the Workstations chapter of the SunView System
Programmer’ s Guide.

37 window_read_event() is the high-level library standard function equivalent of input_readevent() in the
low-level library. For further information, see Section 5.6, Reading Input in the SunView System Programmer’s
Guide.

S u n Revision A, of March 27, 1990

microsystems

88

SunView Programmer’s Guide

¢

Note that if you read events in a canvas subwindow yourself, you must translate
the event’s location to canvas space by calling canvas_event ():

event_in_canvas_space = canvas_event(canvas, event);

S ll n Revision A, of March 27, 1990

microsystems

Material Covered

Related Documentation

Header Files

Summary Listing and Tables

Imaging Facilities: Pixwins

This chapter describes the pixwin which is the construct you use to draw or
render images in SunView. The most basic use of pixwins is to draw in a canvas
subwindow.

In addition to basic pixwin usage, this chapter covers:

o How to boost your rendering speed by locking and batching
o How to use regions for clipping

o How to manipulate the colormap

o How to use the plane groups

This chapter is addressed primarily to programmers who write simple applica-
tions using canvas subwindows. For lower level details, see the chapter on
Advanced Imaging in the SunView System Programmers Guide.

The pixwin drawing operations do not directly support high-level graphics opera-
tions such as shading, segments, 3-D, etc. If your application requires these, then
you should consider some graphics package such as SunGKS, SunCore, or
SunCGI. All of these will run in windows (see the SunCore Reference Manual
and SunCGI Reference Manual for more information).

The definitions necessary to use pixwins are in the header file
<sunwindow/pixwin.h>, which is included by
<sunwindow/window_hs . h>, which in tum is included by default when
you include <suntool/sunview.h>.

To give you a feeling for what you can do with pixwins, the following page con-
tains a list of the available pixin functions and macros. Many of these are dis-
cussed in the rest of this chapter and elsewhere (use the /ndex to check). All are
briefly described with their arguments in the pixwin summary tables in Chapter
19, SunView Interface Summary:

o the Pixwin Drawing Functions and Macros,

o the Pixwin Color Manipulation Functions.

sun 89 Revision A, of March 27, 1990

microsystems

90 SunView Programmer’s Guide

Pixwin Drawing Functions and Macros

pw_batch(pw, n)

pw_batch off(pw)

pw_batch_on(pw)

pw_batchrop(pw, dx, dy, op, items, n)

pw_char(pw, x, y, op, font, c)

pw_close(pw)

pw_copy(dpw, dx, dy, dw, dh, op, spw, sxX, sy)

pw_get(pw, x, Y)

pw_get_region_rect(pw, r)

pw_line(pw, x0, y0, x1, yl, brush, tex, op)

pw_lock(pw, r)

pw_pfsysclose()

pw_pfsysopen()

pw_polygon_ 2(pw, dx, dy, nbds, npts, vlist, op, spr, sx, sy)
pw_polyline(pw, dx, dy, npts, ptlist, mvlist, brush, tex, op)
pw_polypoint (pw, dx, dy, npts, ptlist, op)

pw_put(pw, x, y, value)

pw_read(pr, dx, dy, dw, dh, op, pw,
pw_region(pw, x, y, width, height)
pw_replrop(pw, dx, dy, dw, dh, op, pr, sx, sy)
pw_reset(pw)

pw_rop(pw, dx, dy, dw, dh, op, sp, sX,
pw_set_region_rect(pw, r, use_same pr)
pw_show(pw)

pw_stencil(dpw, dx, dy, dw, dh, op, stpr, stx, sty, spr, sx, sy)

sx, sy)

sY)

pw_text(pw, x, y, op, font, s)
pw_traprop(pw, dx, dy, t, op, pr, sx, sy)
pw_ttext(pw, x, y, op, font, s)

pw_unlock(pw)

pw_vector(pw, x0, y0, x1, y1, op, value)
pw_write(pw, dx, dy, dw, dh, op, pr, sx, sy)
pw_writebackground(pw, dx, dy, dw, dh, op)

Pixwin Color Manipulation Functions

pw_blackonwhite(pw, min, max)
pw_cyclecolormap(pw, cycles,
pw_dbl_access(pw)

pw_dbl_ flip(pw)

pw_dbl get(pw, attribute)
pw_dbl_release()
pw_dbl_set(pw, attributes)
pw_getattributes(pw, planes)
pw_getcmsname(pw, cmsname)

index, count)

index,
green,

count,
blue)

pw_getcolormap(pw,
red,
pvw_getdefaultcms (cms, map)
pw_putattributes(pw, planes)
pw_putcolormap(pw, index, count,
red, green, blue)
pw_reversevideo(pw, min, max)
pw_setcmsname (pw, cmsname)
pw_whiteonblack(pw, min, max)

€rsun

microsystems

Revision A, of March 27, 1990

Chapter 7 — Imaging Facilities: Pixwins 91

7.1. What is a Pixwin?

7.2. Accessing a Pixwin’s
Pixels

Obtaining the Window’s
Pixwin

@

An image in SunView, whether on the screen or in memory, is composed of dots
called pixels and is represented internally as a rectangle of such pixels. The pix-
rect structure is the construct used at a low level to access an image and operate
onit. You can program at the pixrect level to draw on the screen; this is covered
in the Pixrect Reference Manual.

However, in SunView drawing operations are displayed in a window coexisting
on the screen with other, possibly overlapping windows. Except in certain cir-
cumstances, drawing operations should be “well-behaved,” meaning that they
should not spill over into other windows and they should not be visible in por-
tions of the window which are covered by other windows. The pixwin is the
interface through which you operate on the pixels in a particular window. It
guarantees that the above two conditions will be met.

Each pixel has a value. On a monochrome display the value is 1 or 0, since the
pixel can only be on or off, black or white. Such pixels are said to be / bit deep.
On a color display each pixel can have several values corresponding to different
colors.

This section summarizes the functions provided for accessing the pixels of a
pixwin. Most of the pw_* functions described in this section are based on
corresponding pr_* routines, which are fully documented in the Pixrect Refer-
ence Manual. For full discussion of the semantics of a given pixwin function,
refer to the discussion of the corresponding pixrect function in the Pixrect Refer-
ence Manual and/or the errata/addenda section of the most recent Release
Manual.

In particular the pixrect manual gives useful values for the op argument which

determines what the result of combining the source and destination pixels will
be.

The procedures described in this section will maintain the memory pixrect for a
retained pixwin. That is, they perform their operation on the data in memory, as
well as on the screen.

All of these procedures require the pixwin of the window you are drawing in as
an argument. To draw in a canvas, you use the pixwin that is returned by the
procedure:
Pixwin *
canvas_pixwin(canvas);
Canvas canvas;

Look at the example in Section 5.1, Creating a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>